![]() |
GestureRecognitionToolkit
Version: 1.0 Revision: 04-03-15
The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library for real-time gesture recognition.
|
Public Member Functions | |
ClassLabelFilter (UINT minimumCount=1, UINT bufferSize=1) | |
ClassLabelFilter (const ClassLabelFilter &rhs) | |
virtual | ~ClassLabelFilter () |
ClassLabelFilter & | operator= (const ClassLabelFilter &rhs) |
virtual bool | deepCopyFrom (const PostProcessing *postProcessing) |
virtual bool | process (const VectorDouble &inputVector) |
virtual bool | reset () |
virtual bool | saveModelToFile (string filename) const |
virtual bool | saveModelToFile (fstream &file) const |
virtual bool | loadModelFromFile (string filename) |
virtual bool | loadModelFromFile (fstream &file) |
bool | init (UINT minimumCount, UINT bufferSize) |
UINT | filter (UINT predictedClassLabel) |
UINT | getFilteredClassLabel () |
bool | setMinimumCount (UINT minimumCount) |
bool | setBufferSize (UINT bufferSize) |
![]() | |
PostProcessing (void) | |
virtual | ~PostProcessing (void) |
bool | copyBaseVariables (const PostProcessing *postProcessingModule) |
string | getPostProcessingType () const |
UINT | getPostProcessingInputMode () const |
UINT | getPostProcessingOutputMode () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
bool | getInitialized () const |
bool | getIsPostProcessingInputModePredictedClassLabel () const |
bool | getIsPostProcessingInputModeClassLikelihoods () const |
bool | getIsPostProcessingOutputModePredictedClassLabel () const |
bool | getIsPostProcessingOutputModeClassLikelihoods () const |
VectorDouble | getProcessedData () const |
PostProcessing * | createNewInstance () const |
![]() | |
MLBase (void) | |
virtual | ~MLBase (void) |
bool | copyMLBaseVariables (const MLBase *mlBase) |
virtual bool | train (ClassificationData trainingData) |
virtual bool | train_ (ClassificationData &trainingData) |
virtual bool | train (RegressionData trainingData) |
virtual bool | train_ (RegressionData &trainingData) |
virtual bool | train (TimeSeriesClassificationData trainingData) |
virtual bool | train_ (TimeSeriesClassificationData &trainingData) |
virtual bool | train (TimeSeriesClassificationDataStream trainingData) |
virtual bool | train_ (TimeSeriesClassificationDataStream &trainingData) |
virtual bool | train (UnlabelledData trainingData) |
virtual bool | train_ (UnlabelledData &trainingData) |
virtual bool | train (MatrixDouble data) |
virtual bool | train_ (MatrixDouble &data) |
virtual bool | predict (VectorDouble inputVector) |
virtual bool | predict_ (VectorDouble &inputVector) |
virtual bool | predict (MatrixDouble inputMatrix) |
virtual bool | predict_ (MatrixDouble &inputMatrix) |
virtual bool | map (VectorDouble inputVector) |
virtual bool | map_ (VectorDouble &inputVector) |
virtual bool | clear () |
virtual bool | print () const |
virtual bool | save (const string filename) const |
virtual bool | load (const string filename) |
virtual bool | getModel (ostream &stream) const |
double | scale (const double &x, const double &minSource, const double &maxSource, const double &minTarget, const double &maxTarget, const bool constrain=false) |
virtual string | getModelAsString () const |
UINT | getBaseType () const |
UINT | getNumInputFeatures () const |
UINT | getNumInputDimensions () const |
UINT | getNumOutputDimensions () const |
UINT | getMinNumEpochs () const |
UINT | getMaxNumEpochs () const |
UINT | getValidationSetSize () const |
UINT | getNumTrainingIterationsToConverge () const |
double | getMinChange () const |
double | getLearningRate () const |
double | getRootMeanSquaredTrainingError () const |
double | getTotalSquaredTrainingError () const |
bool | getUseValidationSet () const |
bool | getRandomiseTrainingOrder () const |
bool | getTrained () const |
bool | getModelTrained () const |
bool | getScalingEnabled () const |
bool | getIsBaseTypeClassifier () const |
bool | getIsBaseTypeRegressifier () const |
bool | getIsBaseTypeClusterer () const |
bool | enableScaling (bool useScaling) |
bool | setMaxNumEpochs (const UINT maxNumEpochs) |
bool | setMinNumEpochs (const UINT minNumEpochs) |
bool | setMinChange (const double minChange) |
bool | setLearningRate (double learningRate) |
bool | setUseValidationSet (const bool useValidationSet) |
bool | setValidationSetSize (const UINT validationSetSize) |
bool | setRandomiseTrainingOrder (const bool randomiseTrainingOrder) |
bool | registerTrainingResultsObserver (Observer< TrainingResult > &observer) |
bool | registerTestResultsObserver (Observer< TestInstanceResult > &observer) |
bool | removeTrainingResultsObserver (const Observer< TrainingResult > &observer) |
bool | removeTestResultsObserver (const Observer< TestInstanceResult > &observer) |
bool | removeAllTrainingObservers () |
bool | removeAllTestObservers () |
bool | notifyTrainingResultsObservers (const TrainingResult &data) |
bool | notifyTestResultsObservers (const TestInstanceResult &data) |
MLBase * | getMLBasePointer () |
const MLBase * | getMLBasePointer () const |
vector< TrainingResult > | getTrainingResults () const |
![]() | |
GRTBase (void) | |
virtual | ~GRTBase (void) |
bool | copyGRTBaseVariables (const GRTBase *GRTBase) |
string | getClassType () const |
string | getLastWarningMessage () const |
string | getLastErrorMessage () const |
string | getLastInfoMessage () const |
GRTBase * | getGRTBasePointer () |
const GRTBase * | getGRTBasePointer () const |
![]() | |
virtual void | notify (const TrainingResult &data) |
![]() | |
virtual void | notify (const TestInstanceResult &data) |
Protected Attributes | |
UINT | filteredClassLabel |
The most recent filtered class label value. | |
UINT | minimumCount |
The minimum count sets the minimum number of class label values that must be present in the class labels buffer for that class label value to be output by the Class Label Filter. | |
UINT | bufferSize |
The size of the Class Label Filter buffer. | |
CircularBuffer< UINT > | buffer |
The class label filter buffer. | |
![]() | |
string | postProcessingType |
bool | initialized |
UINT | postProcessingInputMode |
UINT | postProcessingOutputMode |
VectorDouble | processedData |
![]() | |
bool | trained |
bool | useScaling |
UINT | baseType |
UINT | numInputDimensions |
UINT | numOutputDimensions |
UINT | numTrainingIterationsToConverge |
UINT | minNumEpochs |
UINT | maxNumEpochs |
UINT | validationSetSize |
double | learningRate |
double | minChange |
double | rootMeanSquaredTrainingError |
double | totalSquaredTrainingError |
bool | useValidationSet |
bool | randomiseTrainingOrder |
Random | random |
vector< TrainingResult > | trainingResults |
TrainingResultsObserverManager | trainingResultsObserverManager |
TestResultsObserverManager | testResultsObserverManager |
![]() | |
string | classType |
DebugLog | debugLog |
ErrorLog | errorLog |
InfoLog | infoLog |
TrainingLog | trainingLog |
TestingLog | testingLog |
WarningLog | warningLog |
Static Protected Attributes | |
static RegisterPostProcessingModule< ClassLabelFilter > | registerModule |
Additional Inherited Members | |
![]() | |
enum | PostprocessingInputModes { INPUT_MODE_NOT_SET =0, INPUT_MODE_PREDICTED_CLASS_LABEL, INPUT_MODE_CLASS_LIKELIHOODS } |
enum | PostprocessingOutputModes { OUTPUT_MODE_NOT_SET =0, OUTPUT_MODE_PREDICTED_CLASS_LABEL, OUTPUT_MODE_CLASS_LIKELIHOODS } |
typedef std::map< string, PostProcessing *(*)() > | StringPostProcessingMap |
![]() | |
enum | BaseTypes { BASE_TYPE_NOT_SET =0, CLASSIFIER, REGRESSIFIER, CLUSTERER } |
![]() | |
static PostProcessing * | createInstanceFromString (string const &postProcessingType) |
![]() | |
static string | getGRTVersion (bool returnRevision=true) |
static string | getGRTRevison () |
![]() | |
bool | init () |
bool | savePostProcessingSettingsToFile (fstream &file) const |
bool | loadPostProcessingSettingsFromFile (fstream &file) |
![]() | |
bool | saveBaseSettingsToFile (fstream &file) const |
bool | loadBaseSettingsFromFile (fstream &file) |
![]() | |
double | SQR (const double &x) const |
![]() | |
static StringPostProcessingMap * | getMap () |
Definition at line 41 of file ClassLabelFilter.h.
GRT::ClassLabelFilter::ClassLabelFilter | ( | UINT | minimumCount = 1 , |
UINT | bufferSize = 1 |
||
) |
Default Constructor. Sets the minimumCount and bufferSize parameters. The minimum count sets the minimum number of class label values that must be present in the class labels buffer for that class label value to be output by the Class Label Filter. The size of the class labels buffer is set by the buffer size parameter. If there is more than one type of class label in the buffer then the class label with the maximum number of instances will be output. If the maximum number of instances for any class label in the buffer is less than the minimum count parameter then the Class Label Filter will output the default null rejection class label of 0.
UINT | minimumCount: sets the minimumCount value. Default value minimumCount=1 |
UINT | bufferSize: sets the size of the class labels buffer. Default value bufferSize=1 |
Definition at line 28 of file ClassLabelFilter.cpp.
GRT::ClassLabelFilter::ClassLabelFilter | ( | const ClassLabelFilter & | rhs | ) |
Copy Constructor.
Copies the values from the rhs ClassLabelFilter to this instance of the ClassLabelFilter.
const | ClassLabelFilter &rhs: the rhs from which the values will be copied to this this instance of the ClassLabelFilter. |
Definition at line 39 of file ClassLabelFilter.cpp.
|
virtual |
Default Destructor
Definition at line 59 of file ClassLabelFilter.cpp.
|
virtual |
Sets the PostProcessing deepCopyFrom function, overwriting the base PostProcessing function. This function is used to deep copy the values from the input pointer to this instance of the PostProcessing module. This function is called by the GestureRecognitionPipeline when the user adds a new PostProcessing module to the pipeline.
const | PostProcessing *postProcessing: a pointer to another instance of a ClassLabelFilter, the values of that instance will be cloned to this instance |
Reimplemented from GRT::PostProcessing.
Definition at line 79 of file ClassLabelFilter.cpp.
UINT GRT::ClassLabelFilter::filter | ( | UINT | predictedClassLabel | ) |
This is the main filter function which filters the input predictedClassLabel.
UINT | predictedClassLabel: the predictedClassLabel which should be filtered return returns the filtered class label |
Definition at line 155 of file ClassLabelFilter.cpp.
|
inline |
Get the most recently filtered class label value.
Definition at line 165 of file ClassLabelFilter.h.
bool GRT::ClassLabelFilter::init | ( | UINT | minimumCount, |
UINT | bufferSize | ||
) |
This function initializes the ClassLabelFilter.
UINT | minimumCount: sets the minimumCount value |
UINT | bufferSize: sets the size of the class labels buffer |
Definition at line 128 of file ClassLabelFilter.cpp.
|
virtual |
This loads the post processing settings from a file. This overrides the loadSettingsFromFile function in the PostProcessing base class.
string | filename: the name of the file to load the settings from |
Reimplemented from GRT::PostProcessing.
Definition at line 244 of file ClassLabelFilter.cpp.
|
virtual |
This loads the post processing settings from a file. This overrides the loadSettingsFromFile function in the PostProcessing base class.
string | filename: the name of the file to load the settings from |
Reimplemented from GRT::PostProcessing.
Definition at line 260 of file ClassLabelFilter.cpp.
ClassLabelFilter & GRT::ClassLabelFilter::operator= | ( | const ClassLabelFilter & | rhs | ) |
Assigns the equals operator setting how the values from the rhs instance will be copied to this instance.
const | ClassLabelFilter &rhs: the rhs instance from which the values will be copied to this this instance of the ClassLabelFilter |
Definition at line 63 of file ClassLabelFilter.cpp.
|
virtual |
Sets the PostProcessing process function, overwriting the base PostProcessing function. This function is called by the GestureRecognitionPipeline when any new input data needs to be processed (during the prediction phase for example). This function calls the ClassLabelFilter's filter(...) function.
const | VectorDouble &inputVector: the inputVector that should be processed. This should be a 1-dimensional vector containing a predicted class label |
Reimplemented from GRT::PostProcessing.
Definition at line 100 of file ClassLabelFilter.cpp.
|
virtual |
Sets the PostProcessing reset function, overwriting the base PostProcessing function. This function is called by the GestureRecognitionPipeline when the pipelines main reset() function is called. This function resets the ClassLabelFilter by re-initiliazing the instance.
Reimplemented from GRT::PostProcessing.
Definition at line 117 of file ClassLabelFilter.cpp.
|
virtual |
This saves the post processing settings to a file. This overrides the saveSettingsToFile function in the PostProcessing base class.
string | filename: the name of the file to save the settings to |
Reimplemented from GRT::PostProcessing.
Definition at line 208 of file ClassLabelFilter.cpp.
|
virtual |
This saves the post processing settings to a file. This overrides the saveSettingsToFile function in the PostProcessing base class.
string | filename: the name of the file to save the settings to |
Reimplemented from GRT::PostProcessing.
Definition at line 228 of file ClassLabelFilter.cpp.
bool GRT::ClassLabelFilter::setBufferSize | ( | UINT | bufferSize | ) |
Sets the bufferSize parameter.
The bufferSize parameter controls the size of the class labels buffer. If the Class Label Filter has been initialized then the module will be reset.
UINT | bufferSize: the new bufferSize parameter |
Definition at line 319 of file ClassLabelFilter.cpp.
bool GRT::ClassLabelFilter::setMinimumCount | ( | UINT | minimumCount | ) |
Sets the minimumCount parameter.
The minimumCount parameter controls how many class labels need to be present in the class labels buffer for that class label to be output by the filter. If the Class Label Filter has been initialized then the module will be reset.
UINT | minimumCount: the new minimumCount parameter |
Definition at line 311 of file ClassLabelFilter.cpp.