
QUEEN’S UNIVERSITY BELFAST

Gesture Recognition for Musician

Computer Interaction

by

Nicholas Edward Gillian

BSc Music Technology, Queen’s University Belfast 2006

MA Sonic Arts, Queen’s University Belfast 2007

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Arts, Humanities and Social Sciences

School of Music & Sonic Arts

March 2011

http://www.qub.ac.uk/
http://www.somasa.qub.ac.uk/~ngillian/
http://www.qub.ac.uk/home/SchoolsDepartments/Faculties/FacultyofArtsHumanitiesandSocialSciences/
http://www.sarc.qub.ac.uk/

c© Copyright Nicholas Edward Gillian, 2011

All Rights Reserved.

i

“If we knew what we were doing, it

wouldn’t be called research, would it?”

Albert Einstein

ii

Abstract

This thesis investigates how machine learning can be applied to the automatic recog-

nition of a musical gesture by a computer. The recognition of gestures in a musical

domain provides a number of interesting research challenges over and above the recog-

nition of gestures in the more general field of human-computer interaction as, due to its

real-time musical application, a low-latency, highly robust, user-configurable recognition

system is required. These research challenges raise a number of fundamental questions

related to the application of gesture recognition for musician-computer interaction; such

as what differences, if any, are there between the application of machine learning for the

classification of musical gestures from that of the classification of other gestures used

throughout various fields within human-computer interaction? This thesis addresses

such questions and in doing so tests the applicability of the leading machine learning

algorithms for the recognition of musical gestures along with developing a number of

new algorithms specifically for the recognition of musical gestures.

The work in this thesis focuses primarily on the discrete classification of a musical

gesture, as opposed to the continuous mapping of a movement to a sound or control

parameter. The scope of the research presented in this thesis is therefore constrained to

the design and evaluation of machine learning algorithms that can be used to classify

both static musical postures and musical gestures that consist of a cohesive sequence of

movements that occur over a variable time period (i.e. temporal gestures).

The principal contributions of this thesis include a number of novel machine learning al-

gorithms that have been specifically developed for the recognition of both static musical

postures and temporal musical gestures. Another major contribution of this thesis is the

development of a real-time gesture recognition software tool that has been designed to

operate independently from any one specific piece of sensor hardware or audio software.

Rather than pre-training the software tool to recognise a specific set of musical gestures,

such as the communicative gestures of a conductor or the expressive gestures of a pianist

for example; the software has instead been designed to facilitate a musician to train the

recognition algorithms with the specific gestures that musician wants to use. The soft-

ware has therefore been designed to enable a performer, regardless of their programming

abilities, to quickly train a computer to recognise their musical gestures using a num-

ber of powerful machine learning algorithms, including the algorithms that have been

specifically developed as the result of this thesis. The work in this thesis therefore not

only contributes to the domains of musician-computer interaction and the more general

field of human-computer interaction; it also facilitates performers to directly apply these

contributions to their compositions, performances and/or research.

iii

Acknowledgements

First and foremost, I would like to thank both Sile O’Modhrain and Ben Knapp for their

amazing supervision skills, guidance, encouragement, inspiration and friendship. Thank

you for believing in me and giving me this extraordinary opportunity to embark on this

adventure. Thank you Ben for always asking the right questions and thank you Sile for

always having the right answers.

I would like to thank Michael Alcorn, for his vision, leadership and hard-work in es-

tablishing the fantastic research and teaching facility that is SARC. Thanks to Pearl

Young, Marian Hanna and Kirk Shilliday for taking the University and E.U. red tape

and making it into beautiful little bows. A special thanks to Chris Corrigan for always

making me laugh any time I needed a cable or microphone.

I owe many thanks to Cathy Craig and Michael Gurevich for their excellent comments

and feedback during my differentiation.

Thanks to all those past and present Ph.D. students within SARC who have made the

many many hours spent in the lab a joy. Special thanks to Peter Bennett for always

inspiring me with his sketches and ideas, Matthew Rodger for the many discussions

and SKILLS adventures, Nicholas ‘Alpha’ Ward for always being a continuous source of

knowledge, wisdom and chaos, Sebastian Heinz for his endless enthusiasm, Javier ‘J.J.’

Jaimovich for always interrupting me with Matlab questions, Steve ‘The Daddy’ Davis

for our thought provoking discussions on the world and its inhabitants, Migel Ortiz-

Pérez, Adnan Marquez-Borbon, Brennon Bortz, Niall Coghlan, Cavan Fyans, Donal

O’Brien, Tom Davis, Henry Vega, Grant Ford, Fernando Gualda, Dionysis Athinaios for

his beats, Orestis Karamanlis for his amazing music, Sarah Orr for telling me all about

imaginary numbers many many years ago, Sarah Bass, Chris McClelland and countless

others who I have no doubt forgot, you know who you are.

I am incredibly grateful for the many friends both outside the lab and who I have

met along this adventure. Special thanks to Will Young, Alyson Campbell, Anna

Newell, Sarahjane ‘Belto’ Belton, Deborah ‘Cheeky Monkey’ Varoqui, Caroline Teulier,

Sebastien Petracca Villard, Gregory Zellic, Steve Sinclair, Donald Glowinski, Neil Har-

rision, Jo Harrison, Cindy and Uel, Kimberly ‘Coconut’ O’Hara, Ashley Cassidy, Mark

‘Lover’ Todd, Louise Harvey, Leanne Cochrane, David Goodall, Robyn Farah, Lesley

‘Bisous’ Oman and Craig Oman.

I would like to thank Sarah Nicolls, Bob Pritchard and Alexander Jensenius for their

thoughts, questions and comments.

iv

v

A tremendous thanks to all the EyesWeb team, for creating such a great piece of soft-

ware to work with and for always welcoming me so warmly to Casa Paganini. I would

particularly like to thank Paolo Coletta and Gualtiero Volpe for their support, technical

advice and enthusiasm. I would also like thank all those working at the BIOMOBIUS

team, especially Brian O’Mullane for his technical skills and friendship.

This Ph.D. was funded by the E.U. project SKILLS, I am indebted to everyone I met

and worked with whilst working on this project. I would particularly like to thank

Julian Lagarde, Benoit Bardy, Denis Mottet, Stas Krupenia, Pablo Hoffmann, Sabine

‘Sabineee’ Webel, Timo Engelke, Katharina Hertk and Uli Bockholt.

A great big bear-sized thanks goes to Samira ‘Poupette’ Bouazzaoui for being the best

coffee buddy one could ever ask for; I will treasure every piece of crunchy cheese cake and

chicken caesar salad (without chicken) we enjoyed together. A very very special thanks

to Johann ‘Yogi Bear’ Issartel, who has been along side me every step of this adventure,

on the infrequent bad days and on the many many many fantastic days. Thank you for

everything - without your friendship this would have been a different story.

Finally, a massive thanks to all my family for all their support, encouragement, nour-

ishment and financial assistance over nearly the last eight years of university. A special

thanks to both Nanny and Ivan for always being there - things would have been so much

harder without you both!

For Mum - you are simply amazing

vi

Contents

Abstract iii

Acknowledgements iv

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Thesis Overview . 2
1.2 Research Questions, Aims and Objectives 3
1.3 Thesis Contributions . 3
1.4 Thesis Outline . 6

2 Background and Related Work 8
2.1 Machine Learning Fundamentals . 8

2.1.1 Types of Learning . 9
2.1.2 Training a Model . 10
2.1.3 Pre-processing . 12
2.1.4 Post-processing . 12
2.1.5 Underfitting, Overfitting and Model Selection 13
2.1.6 Generalisation Error . 14

2.1.6.1 Cross-Validation . 14
2.1.6.2 Repeated Sub-Sampling Validation 15
2.1.6.3 K -fold Cross-Validation 15
2.1.6.4 Stratified Validation . 16
2.1.6.5 Cross Validation Error Measures 16

2.1.7 Validation Methods used in this Thesis 17
2.1.8 Applying Machine Learning to Gesture Recognition 17

2.2 Gesture Recognition for Human Computer Interaction 18
2.2.1 Glove Based Recognition Systems 19
2.2.2 Computer-Vision Based Recognition Systems 19
2.2.3 Inertial Measurement Unit Based Recognition Systems 19

2.2.3.1 Custom Made IMU Recognition Systems 20
2.2.3.2 IMU Recognition Algorithms 21

2.2.4 Gesture Recognition for HCI Summary 21
2.3 Gesture Recognition for Musician Computer Interaction 22
2.4 Musical Gestures . 24

vii

2.4.1 The Musical Gesture Spectrum . 26
2.4.2 Higher Order Recognition . 27
2.4.3 Musical Gestures Summary . 28

2.5 Summary . 28

3 Gesture Recognition Systems for Musician Computer Interaction 29
3.1 Musician Computer Interaction . 29

3.1.1 Existing Commercial Interfaces . 30
3.1.2 New Interfaces for Musical Expression 31
3.1.3 Gestural Interaction . 32
3.1.4 Teaching A Machine To Recognise Musical Gestures 33
3.1.5 Adopting A Machine Learning Approach 34
3.1.6 Applying Machine Learning To MCI 34

3.2 Gesture Recognition Design Strategies For MCI 35
3.2.1 Gesture Recognition Systems for HCI 36
3.2.2 Gesture Recognition Systems for MCI 36
3.2.3 The Intra-personal Generalisation Goal 37
3.2.4 Fast Training, Fast Testing, Fast Prototyping 37
3.2.5 The Bias-Variance Tradeoff . 38
3.2.6 Adaptive Models . 39
3.2.7 Error Tolerances . 39
3.2.8 Risk . 40
3.2.9 Validating An Intra-Personal Classification Algorithm 40
3.2.10 Design Strategies Summary . 41

3.3 Creating a Gesture Recognition System for MCI 42
3.3.1 The SEC . 43
3.3.2 The SEC Blocks . 44
3.3.3 Using the SEC for MCI . 46
3.3.4 Middleware Design Architecture 46
3.3.5 Creating a Robust Recognition System 47
3.3.6 Training a Machine Learning Algorithm 48

3.4 Summary . 49

4 Recognition of Static Semiotic Musical Gestures 51
4.1 Semiotic Gestures . 51

4.1.1 Semiotic Musical Gestures . 52
4.2 Designing A Classifier For Semiotic Musical Gestures 53
4.3 Adaptive Näıve Bayes Classifier . 54

4.3.1 Bayes’ Theory . 55
4.3.2 The Gaussian Density Function . 56
4.3.3 Adding a Weighting Coefficient For An N -Dimensional Model . . . 57
4.3.4 Real-World Computational Concerns 58
4.3.5 Training The Gaussian Model . 59
4.3.6 Preventing Over-Fitting . 59
4.3.7 Classification Using The Gaussian Model 60
4.3.8 Computing a Suitable Confidence Measure For Real-Time Recog-

nition . 61

4.3.9 Computing a Rejection Threshold 62
4.3.10 Adaptive Online Training . 62
4.3.11 Strengths and weaknesses of the ANBC algorithm 64

4.4 Implementation of the ANBC algorithm in EyesWeb 65
4.4.1 The ANBC Training Tool block . 65
4.4.2 The ANBC Train block . 66
4.4.3 The ANBC Predict block . 67
4.4.4 Summary of the ANBC block design 68

4.5 Evaluating the ANBC Algorithm . 70
4.5.1 Air Makoto . 70
4.5.2 Hit Detection . 72
4.5.3 Location And Setup . 72
4.5.4 Participants . 73
4.5.5 Method . 73

4.5.5.1 Data Colletection Phase 74
4.5.5.2 Practice Phase . 74
4.5.5.3 Game Phase . 75
4.5.5.4 ANBC Settings . 75

4.5.6 Results . 75
4.5.7 Discussion . 76
4.5.8 Conclusion . 77

4.6 Summary . 78

5 Recognition of Multivariate Temporal Musical Gestures 79
5.1 Multivariate Temporal Gestures . 79

5.1.1 An Overview Of The Classification Problem 80
5.1.2 The Performance Factor . 81
5.1.3 Gesture Segmentation . 82

5.1.3.1 Trigger Keys . 82
5.1.3.2 Sliding Windows . 82
5.1.3.3 Activity Detection . 83
5.1.3.4 Musical Segmentation Cues 83

5.1.4 Multivariate Temporal Recognition Summary 83
5.2 The Numbers-Shapes Data Set . 85

5.2.0.1 Location and Setup . 85
5.2.0.2 Participants . 86
5.2.0.3 Automatic Gesture Tagging 86
5.2.0.4 Instructions . 87
5.2.0.5 Post-processing . 88
5.2.0.6 Error Measures Used For Testing 88

5.3 Hidden Markov Models . 90
5.3.1 Vector Quantisation . 90
5.3.2 Vector Quantisation Using k-means Clustering 90

5.3.2.1 Training the k-means Algorithm 90
5.3.2.2 Quantisation using the k-means Algorithm 93

5.3.3 Vector Quantisation Using SAX 94
5.3.4 HMM Description . 96

5.3.5 HMM Components . 96
5.3.6 The Three Basic Problems for HMMs 97
5.3.7 The Forward-Backward Algorithm 98

5.3.7.1 The Alpha-Beta Algorithm 99
5.3.7.2 The Forward Algorithm 100
5.3.7.3 The Backward Algorithm 101

5.3.8 The Baum-Welch Algorithm . 102
5.3.9 Model Types . 105
5.3.10 Scaling . 106
5.3.11 Batch Training . 108
5.3.12 Classification using the HMM Algorithm 109
5.3.13 Calculating the Classification Threshold 109
5.3.14 Laplace Smoothing . 110

5.4 HMM Experiments on Synthetic Data . 111
5.4.1 Evaluation of an HMMs Estimation Abilities 112

5.4.1.1 Results & Discussion . 112
5.4.2 Evaluation of an HMMs Classification Abilities 114

5.4.2.1 Results . 115
5.4.2.2 Discussion . 115

5.5 HMM Experiments on Real Data . 116
5.5.1 HMM Model Type Evaluation . 116

5.5.1.1 Results & Discussion . 117
5.5.2 HMM Number of States Evaluation 117

5.5.2.1 Results & Discussion . 118
5.5.3 HMM Number of Symbols Evaluation 119

5.5.3.1 Results & Discussion . 119
5.5.4 Evaluation of the SAX Alphabet Size 120

5.5.4.1 Results & Discussion . 120
5.5.5 Evaluation of the SAX Frame Size 121

5.5.5.1 Results & Discussion . 121
5.5.6 Evaluation of an HMMs Classification Abilities With Pre-Segmented

Data . 122
5.5.6.1 Results . 122
5.5.6.2 Discussion . 123

5.5.7 Evaluation of a HMMs Classification Abilities With Continuous
Data . 123
5.5.7.1 Results . 124
5.5.7.2 Discussion . 125

5.5.8 HMM Summary . 126
5.6 Summary . 127

6 Support Vector Machines 128
6.1 Support Vector Machines . 128

6.1.1 SVM . 129
6.1.2 Mapping to a High-Dimensional Space 131
6.1.3 Using Probabilistic Outputs For A Classification Threshold 132
6.1.4 Using SVM to Classify Multivariate Temporal Data 133

6.1.5 Time Domain Features . 134
6.1.6 Frequency Domain Features . 135

6.2 SVM Experiments . 136
6.2.1 SVM Experiment A . 137

6.2.1.1 Results . 137
6.2.1.2 Discussion . 138

6.2.2 SVM Experiment B . 139
6.2.2.1 Results & Discussion . 139

6.2.3 SVM Experiment C . 139
6.2.3.1 Results . 141
6.2.3.2 Discussion . 142

6.3 SVM Summary . 144
6.4 Summary . 145

7 Dynamic Time Warping 146
7.1 Dynamic Time Warping . 146

7.1.1 Related Work . 147
7.1.2 One-Dimensional DTW . 148
7.1.3 Numerosity Reduction . 150
7.1.4 Constraining the Warping Path . 150

7.2 N -Dimensional Dynamic Time Warping 151
7.2.1 Training the ND-DTW Algorithm 151
7.2.2 Multi-Threaded Training . 152
7.2.3 Classification using the ND-DTW Algorithm 153
7.2.4 Determining the Classification Threshold 153
7.2.5 Pre-processing for ND-DTW . 154
7.2.6 Dealing With A Large Gestural Vocabulary 155

7.3 ND-DTW Experiments . 156
7.3.1 ND-DTW Experiment A . 156

7.3.1.1 Results . 156
7.3.1.2 Discussion . 156

7.3.2 ND-DTW Experiment B . 157
7.3.2.1 Method . 157
7.3.2.2 Results & Discussion . 158

7.3.3 ND-DTW Experiment C . 159
7.3.3.1 Method . 159
7.3.3.2 Results . 160
7.3.3.3 Discussion . 161

7.4 ND-DTW Summary . 163
7.5 Multivariate Temporal Recognition Algorithm Summary 165

7.5.1 Choosing Which Algorithm To Use When 166
7.5.1.1 Limited Number Of Training Examples 166
7.5.1.2 Substantial Number Of Training Examples 166
7.5.1.3 Adding & Removing Gestures From A Trained Model . . 167
7.5.1.4 Automatic Recognition 168

7.6 Summary . 168

8 Conclusion 169
8.0.1 Objective 1 . 170
8.0.2 Objective 2 & 3 . 170
8.0.3 Objective 4 . 171

8.1 Research Contributions . 171
8.2 Future Research . 174

8.2.1 Continuous Real-Time Recognition 174
8.2.2 Coherent Classification Feedback 175

8.3 Concluding Remarks . 175

Bibliography 176

List of Figures

2.1 A machine learning algorithm, expressed as a function hφ(x) 11
2.2 An illustration of the training phase of a machine learning algorithm. . . . 12
2.3 An illustration of the processing chain for a gesture recognition system . . 13
2.4 One iteration of repeat sub-sampling validation. 15
2.5 K -Fold Cross Validation, with a K value of 5. 16
2.6 An illustration of the four functional categories of musical gestures 26

3.1 An example of the custom mapping typically found in MCI 30
3.2 Two MCI controllers that provide discrete and continuous real-time control 31
3.3 A number of example EyesWeb patches 44
3.4 An SEC FIR filter block . 45
3.5 An example EyesWeb patch . 45
3.6 An example of the middleware architecture of a gesture recognition system 47
3.7 A training patch for the ND-DTW algorithm. 48
3.8 A prediction patch for the ND-DTW algorithm. 49

4.1 The performance artist ‘Butch’ Morris . 53
4.2 Two one-dimensional Gaussian distribution 56
4.3 Two two-dimensional weighted Gaussian distributions 58
4.4 The log probability surfaces for 2-dimensional weighted Gaussians. 59
4.5 An example patch demonstrating the ANBC Training Tool block 67
4.6 An example patch demonstrating the use of the ANBC Train block. . . . 68
4.7 An example patch demonstrating the use of the ANBC Predict block. . . 69
4.8 The 3D virtual game environment used in Air Makoto. 71
4.9 An example of the main signal processing steps of the hit detection algorithm 73

5.1 An example of each of the gestures in the Numbers-Shapes data set . . . 86
5.2 Tagging the gesture data with the gesture state marker. 87
5.3 An illustration of the k-means clustering algorithm 92
5.4 An illustration of the k-means algorithm 92
5.5 Quantisation using the minimum cluster center or the k-NN algorithm . . 93
5.6 An illustration of the SAX algorithm being used for vector quantisation . 94
5.7 An illustration of the quantisation training phase 95
5.8 An illustration of one forward estimate at time t for state j. 100
5.9 An illustration of one backward estimate at time t for state i. 101
5.10 An illustration of the fast approximation of a model’s final converged

log-likelihood value . 104
5.11 An illustration of a 4 state second-order left-right Hidden Markov Model . 105

xiii

5.12 An illustration of a 4 state ergodic Hidden Markov Model 106
5.13 The average estimated error for each increment of η 113
5.14 The derivative of the fitted line . 113
5.15 The classification results for the first 50 training increments. 114
5.16 The classification results for all the training increments from 1 - 1000. . . 115
5.17 The ACVR results for each type of model design 117
5.18 The ACVR results for each increment of N 118
5.19 The cross-validation results for each increment of M 119
5.20 The cross-validation results for each increment of a. 120
5.21 The cross-validation results for each increment of f 121
5.22 The cross-validation classification results for each of the 10 participants . 122
5.23 The classification accuracy for each participant 125

6.1 An illustration of the SVMs Convex Optimisation Problem 129
6.2 Two-class linearly separable classification example. 130
6.3 Mapping the original input space into a higher-dimensional feature space. 131
6.4 An illustration of the sigmoid function . 133
6.5 The processing chain for the SVM algorithm. 133
6.6 An illustration of the windowed temporal time domain feature extraction 135
6.7 The cross-validation results for each of the participants 138
6.8 The ACCR values averaged across all 10 participants 140
6.9 The correct classification results for each of the participants 142
6.10 The APR results for each of the gestures 143
6.11 The ARR results for each of the gestures 143

7.1 An illustration of the non-linear mapping advantages of DTW 147
7.2 An illustration of the DTW Cost Matrix and the Minimum Warping Path 149
7.3 Real-time classification using ND-DTW. 151
7.4 The cross-validation classification results for each of the 10 participants . 157
7.5 The ACCR values averaged across all 10 participants 158
7.6 The correct classification results for each of the 10 participants 162
7.7 An illustration of the prediction abilities of the ND-DTW algorithm . . . 164
7.8 An illustration of the continuous classification abilities of ND-DTW . . . 164

List of Tables

4.1 The scores from the game phase of Air Makoto for all 12 participants . . 77

5.1 The confusion matrix across all 10 participants for each of the 10 gestures 123
5.2 The average precision and average recall for each gesture. 125

6.1 Mean, Standard Deviation and Euclidean Norm of Signal A and B. 134
6.2 The mean, standard deviation and Euclidean norm of Signal A and B . . 135
6.3 The results for each of the three conditions 138
6.4 The precision ratio results for each of the 10 participants and 10 gestures. 141

7.1 The ACCR results for each value of γ . 160
7.2 The individual correct classification results for each of the 10 participants 162
7.3 The average precision ratio and average recall ratio for each gesture . . . 162
7.4 A summary of the HMM, SVM and ND-DTW algorithms 165

xv

Chapter 1

Introduction

We can only see a short distance ahead, but we can

see plenty there that needs to be done.

Alan Turin

Performers have been using sensors to trigger, control and manipulate sounds via com-

puter software for over 50 years, such as the pioneering work by Mathews (1991a) for

example, who used an augmented radio baton to trigger and continuously control a

MIDI synthesizer. Eminent technological breakthroughs over the last half-century have

resulted in, amongst other things, the production of inexpensive ubiquitous sensor de-

vices, exceptionally powerful computer hardware and real-time music composition and

performance software. The combination of inexpensive sensors, powerful computer hard-

ware and real-time audio processing software is particularly advantageous for a musician;

especially in a live performance scenario. The accessibility of this technology affords a

performer exciting new interaction paradigms facilitating the performer to use their

own body movements to control a machine even when their hands are busy playing an

instrument.

However, despite the ever decreasing cost in sensor technology and the rapid advances

in computer systems, it is still extremely difficult for a performer to interact with a

computer in the same way as they would interact with other performers live on stage.

Directly mapping the output of a sensor to the frequency of an oscillator, for example, is

one thing; but actually getting a computer to ‘understand’ this signal and the underlying

movement that created it is quite another. To enable effective musician-computer inter-

action that rivals that of performer-performer interaction a computer must be able to

recognise and respond to the musical cues, movements and directions of the performer.

Teaching a computer to recognise these musical gestures is not an easy task, however, as

1

Chapter 1. Introduction 2

first an appropriate sensor must be used to capture the gesture and second the computer

must some-how learn to recognise the pattern that occurs in the sensor data (or features

derived from the data) when a corresponding gesture takes place.

To facilitate a computer in recognising these patterns a performer may want to apply

the tools and techniques developed by a branch of artificial intelligence called machine

learning. The goal in machine learning is to attempt to ‘teach’ a computer to recognise

a specific pattern, such as a musical conducting gesture, by using a computer algorithm

to analyse a data set in the hope that the algorithm can automatically discover the

underlying pattern in the data. Machine learning has been successfully applied to solve

complex pattern recognition problems in areas such as automated speech recognition

(e.g., Rabiner, 1989, Benzeghiba et al., 2007), fingerprint recognition (e.g., Kong et al.,

2009, Liu, 2010), optical character recognition (e.g., Mori et al., 1992, Plamondon and

Srihari, 2000), face recognition (e.g., Zhao et al., 2003, Zhang and Gao, 2009) and much

more and would therefore provide an appropriate tool for the recognition of musical

gestures.

1.1 Thesis Overview

This thesis investigates how machine learning can be applied to the recognition of mu-

sical gestures, with the goal of making gestural interaction as viable an interaction

paradigm between a musician and a computer as it currently is between two performers.

Whereas the majority of previous work in gestural interaction for musical control, such

as in Waisvisz (1985), Mulder (2000), Tanaka and Knapp (2002) and much more, has

focused on the continuous mapping of a movement to a sound or control parameter;

the work in this thesis focuses on the discrete classification of a musical gesture. This

thesis specifically investigates how a computer can be trained to recognise both static

postures and gestures that consist of a cohesive sequence of movements that occur over

a variable time period, which shall be referred to as temporal gestures.

The work in this thesis can be differentiated from the previous work in the discrete

classification of musical gestures, such as that undertaken by Merrill and Paradiso (2005),

Bevilacqua et al. (2007) and Bevilacqua et al. (2009), because it is not constrained

to the recognition of a specific set of gestures, does not require a dedicated piece of

sensing hardware and is not limited to the control of one piece of computer software.

This research also stands apart from the recently published work by Fiebrink (2011),

who examined machine learning through the lens of human-computer interaction in the

context of computer music and performance, as this work addresses the recognition

Chapter 1. Introduction 3

of temporal gestures. This thesis also presents a number of novel machine learning

algorithms that have been specifically designed for the recognition of musical gestures.

1.2 Research Questions, Aims and Objectives

The main topic of this dissertation is gesture recognition for musician-computer inter-

action and the main research question is:

How can machine learning be applied to the recognition of musical

gestures?

This research question formed the foundation of a set of aims and objectives upon which

this dissertation is based. These are to:

1. Evaluate what differences, if any, there are between the application of machine

learning for the recognition of musical gestures from that of the recognition of

other gestures used throughout various fields within human-computer interaction.

2. Test the applicability of the leading machine learning algorithms for the recognition

of musical gestures.

3. Develop new algorithms specifically for musician-computer interaction if they are

required.

4. Develop software tools that can facilitate real-time musician-computer interaction

for any user; even those with no knowledge of machine learning or who have limited

computer skills.

1.3 Thesis Contributions

The contributions made in this thesis are as follows:

- Definition of Musician-Computer Interaction

This thesis defines the term musician-computer interaction (MCI) as a spe-

cific subfield of the larger research area of human-computer interaction (HCI).

MCI focuses specifically on technology that can enable musicians to interact with

computers and provides a number of interesting research and design challenges

Chapter 1. Introduction 4

over and above the more general field of HCI as, due to its real-time musical ap-

plication, a low-latency highly robust user-configurable system is required. MCI

was therefore defined to help differentiate the design and research goals from other

areas of HCI. This definition can be found in chapter 3.1.

- Adopting A Machine Learning Approach For MCI

This thesis presents the motivations for a performer to adopt a machine learning

approach to enable the automatic recognition of musical gestures to be used for

MCI. This thesis proposes that the application of machine learning for the recog-

nition of musical gestures requires a paradigm shift from the common training,

testing, deployment and evaluation strategies used throughout other areas of HCI

that also use gesture recognition. Evidence is presented to show that the goal

of a gesture recognition system for MCI should be to achieve a low intra-personal

generalisation error, as opposed to the inter-personal generalisation error goal that

is common in other areas of HCI. The MCI machine learning design, development,

deployment and evaluation strategies are then applied to create a design criteria

for a recognition system for musical gestures which in turn provides the motiva-

tion for a new software tool to enable the recognition of discrete gestures for MCI.

These arguments can be found in chapter 3.1.3.

- Recognition of Static Musical Gestures

This thesis presents a novel algorithm called the Adaptive Näıve Bayes Clas-

sifier (ANBC) which can be used for the recognition of static musical gestures.

The ANBC algorithm has five significant advantages for the classification of static

musical gestures:

1. The input to the ANBC algorithm consists of an N -dimensional vector, re-

sulting in the input to the algorithm not being constrained to only work with

one type of sensor, such as a mouse or camera.

2. An N -dimensional weighting coefficients vector enables the user to specify

which of the N dimensions of input data are salient for a particular ges-

ture. This enables one general classifier to be used in scenarios were several

classifiers would have been required.

3. The ANBC algorithm can be rapidly trained with a small number of training

examples.

4. The ANBC algorithm can be used to recognise static musical gestures in a

continuous stream of data that may also contain non-gestural data without

having to first train a null-model, such as a noise model that is used in speech

recognition.

Chapter 1. Introduction 5

5. The ANBC algorithm can automatically adapt itself as a performer adapts

their own gestures over, for example, the course of a rehearsal period.

The ANBC algorithm can be found in chapter 4.

- Recognition of Temporal Musical Gestures

This thesis makes some specific contributions to the discrete classification of tem-

poral gestures for both MCI and for the wider HCI community. Three existing

machine learning algorithms have been specifically adapted for the recognition of

musical gestures. Each algorithm has been extended to:

1. Classify any N -dimensional signal.

2. Be rapidly trained with a small number of training examples.

3. Recognise temporal musical gestures in a continuous stream of data that may

also contain non-gestural data without having to first train a null-model.

These machine learning algorithms include Hidden Markov Models, Support

Vector Machines and Dynamic Time Warping. Each algorithm has been

tested using a specifically captured data set of temporal gestures with all three

modified algorithms achieving excellent recognition results, some even achieving

100% recognition. The advantages and disadvantages of each algorithm have been

summarized for their potential application in MCI. The algorithms, results and

summaries can be found in chapters 5 to 7.

- A Flexible Gesture Recognition System For MCI

One of the major contributions of this thesis is that all of the algorithms developed,

design concepts proposed and training strategies suggested have all been encap-

sulated within one flexible software program that enables composers, performers

and researchers to actually use this work to recognise their musical gestures. The

software, which is called the SARC EyesWeb Catalog (SEC), has been designed

to operate independently from any one specific piece of sensor device or audio

software and operates online1 and in real-time. The SEC’s main advantage for

MCI is that, due to its modular design, it facilitates a performer, regardless of

their programming abilities, to quickly train a computer to recognise their musical

gestures using a number of powerful machine learning algorithms. The SEC is

presented in chapter 3.3.
1i.e., sensor data can be streamed into the software and be classified as a gesture is being performed,

rather than offline recognition where a performer makes a gesture, saves the sensor data to a file, loads
the file into an analysis program and then gets a recognition result

Chapter 1. Introduction 6

1.4 Thesis Outline

The remaining chapters of this thesis cover:

Background and Related Work :

Chapter 2 reviews the prior work conducted in gesture recognition in the fields of

music, human-computer interaction and other related areas. It also provides an

overview of machine learning, presenting some key terminology used throughout

this thesis.

Gesture Recognition Systems for Musician Computer Interaction :

Chapter 3 sets out the theoretical foundations on which the remainder of the

thesis is based. It first describes in detail the area of research defined as musician-

computer interaction (MCI). This is followed by a discussion of gestural interac-

tion with respect to its use as a control method for a performer and puts forward a

case for the use of a machine learning approach to recognise a musician’s gestures.

The common design, development, training and evaluation strategies for gesture

recognition systems are then reviewed and the strategies of such systems for HCI

and MCI are differentiated. The chapter is concluded by presenting the SARC

EyesWeb Catalog (SEC), a machine learning toolbox that has been specifically

designed for musician computer interaction.

Recognition of Static Semiotic Musical Gestures :

Chapter 4 presents the ANBC algorithm and illustrates how it can be used for the

recognition of static semiotic musical gestures. It will be shown how the algorithm

can automatically adapt itself to accommodate a performer as they adapt their own

gestures over, for example, the course of a rehearsal period. The chapter concludes

with an experiment designed to evaluate the adaptive classification abilities of the

ANBC algorithm. The results of this experiment show that a signicant overall

improvement was achieved when the adaptive element of the algorithm was used.

Multivariate Temporal Gesture Recognition :

Chapter 5 provides an overview of the recognition of temporal gestures and dis-

cusses why this can prove to be a complex classification task. This is followed by

a description of the numbers-shapes data set, a data set containing ten partici-

pants performing ten temporal gestures that was specifically collected to test the

multivariate temporal recognition algorithms in this thesis. The Hidden Markov

Model (HMM) algorithm is then presented and it will be shown how the algorithm

has been adapted for MCI. The chapter concludes with a number of experiments

designed to evaluate the classification abilities of the HMM algorithm. The exper-

iments show that the modified HMM algorithm achieved a moderate recognition

Chapter 1. Introduction 7

rate of 87% on the numbers-shapes data set when the gestures were pre-segmented

by the user. However, the HMM algorithm was deemed unsuitable for the classi-

cation of musical gestures because it failed to recognise the same gestures from a

continuous stream of data and also took a long time to train.

Support Vector Machines :

Chapter 6 describes a powerful machine learning algorithm called Support Vec-

tor Machines (SVM) and illustrates how the algorithm has been modified for

the recognition of temporal musical gestures. A number of feature extraction al-

gorithms that have been specifically applied to represent multivariate temporal

gestures are presented along with a description of how the SVM algorithm has

been adapted to classify gestures from a continuous stream of data. The chapter

concludes with a number of experiments designed to evaluate the multivariate tem-

poral classification abilities of the SVM algorithm. The experiments show that the

SVM algorithm achieved an excellent classification result of 99.28% when the ges-

tures from the numbers-shapes data set were pre-segmented by the user and that

it could be rapidly trained. However, although the SVM algorithm was success-

ful at accurately rejecting null gestures (i.e. any movement that is not a gesture

the algorithm was trained to recognise), the algorithm failed to achieve a useable

recognition rate from a continuous stream of data.

Dynamic Time Warping :

Chapter 7 presents the Dynamic Time Warping algorithm and illustrates how it

has been adapted for the recognition of temporal musical gestures. It will be shown

how the DTW algorithm has been extended to classify any N -dimensional signal

and automatically compute a classification threshold to reject any data that is not a

valid gesture from a continuous stream of data that also contains null gestures. The

modified DTW algorithm is evaluated using the numbers-shapes data set and the

results show that it can be trained rapidly with a small number of training examples

and it achieved an excellent recognition rate of 99.37% when the gestures from the

test temporal data set were pre-segmented by the user. The DTW algorithm

also achieved a moderate recognition result of 84.18% when classifying the same

gestures from a continuous stream of data that also contained null gestures. The

chapter concludes with a summary of the advantages and disadvantages of all three

of the multivariate temporal recognition algorithms, suggesting which algorithm

may be most appropriate to use in a number of hypothetical recognition scenarios.

Conclusion :

Chapter 8 summarises the work described in this thesis and highlights the contri-

butions achieved. Future work is also discussed.

Chapter 2

Background and Related Work

Experience is the name everyone gives to their mistakes.

Oscar Wilde

This chapter reviews the prior work conducted in gesture recognition in the fields of

music, human-computer interaction and other related areas. Prior to reviewing the

gesture recognition literature a brief overview of machine learning is given1, presenting

some key terminology2 that will be used throughout this thesis.

2.1 Machine Learning Fundamentals

Consider a rudimentary interaction scenario in which a musician wants to trigger a sound

to play if they place their hand in a certain region of space, for example above a specific

key on a piano. To capture their movements the performer might use a camera that can

track the position of their hands or they might place a light sensor directly in line with

the region of space being used as the ‘trigger zone’. To enable a computer to recognise

whether the musician’s hand is in the trigger zone they might create a simple recognition

system in which the raw data from the sensor is passed through a threshold algorithm

which will trigger a sound to play if the sensor data exceeds a set threshold value. For

this system there is one parameter value that needs to be set in the threshold algorithm,

namely the value at which a response should be triggered. Setting this threshold value

manually may be a trivial matter if only one sensor is being used; however this quickly

becomes a complex task if more than one sensor or threshold value is required.
1Interested readers can find a comprehensive introduction to machine learning in Bishop (2006) and

Duda et al. (2001)
2key terminology is highlighted in bold italics

8

Chapter 2. Background and Related Work 9

It is in this instance that a musician may want to adopt a machine learning approach

in which a large set of M examples called a training set , x = {x1, x2, . . . , xM}ᵀ, are

used by a machine learning algorithm to tune the parameters of an adaptive function

or model . Each example in the training set, also known as a training vector , is not

limited to just one dimension but can consist of an N dimensional vector of values, xi =

{x1, x2, . . . , xN}. The adaptive model being used could be as simple as the thresholding

algorithm in the previous example, in which it would have one input - the sensor value,

one output - a value representing the system’s state when the input is greater than the

threshold, and one parameter - the threshold value. Alternatively, the adaptive model

could consist of multiple inputs, outputs and numerous parameters.

Regardless of the complexity of the model being used, the overall concept in machine

learning is the same in that a set of training data are used to tune the parameters of the

model to achieve the minimum error with respect to some pre-determined error criteria.

The specific criteria used will depend on the type of algorithm being applied to train

the model and the type of classification problem that the user wants to solve; both of

these points will be discussed in more detail shortly.

Once the model has been trained it can then determine the identity of new previously

unseen input vectors, which could be comprised of a test set in offline testing or ‘live’

data in real-time prediction. The ability to categorise correctly new examples that differ

from those used for training is known as generalisation . In practical applications, the

variability of the input vectors will be such that the training data can comprise only

a tiny fraction of all possible input vectors, and so generalisation is a central goal in

pattern recognition (Bishop, 2006).

2.1.1 Types of Learning

If the corresponding output of the model, given an input, is known in advance then the

training process is referred to as supervised learning . In other pattern recognition

problems, the training data could consist of M unlabeled training examples, in which

case the problem is referred to as unsupervised learning3. In unsupervised learning

the goal of the training process might be to automatically cluster the training data intoK

similar groups or project the data from a high-dimensional space into a lower dimensional

space, e.g. reducing the data down to three dimensions so it can be visualised. For

supervised learning, the goal of the training process will be to minimise the error value

between the known output of the model, which is referred to as a target value , and the

actual output of the model given the current parameter values. The target values can
3Several other types of learning exist such as semi-supervised learning and reinforcement learn-

ing among others

Chapter 2. Background and Related Work 10

be expressed using a target vector , t, with an input vector - target vector pair {xi, ti}
for each training example. As was the case for an input vector, each target vector can

itself be a T dimensional vector, ti = {t1, t2, . . . , tT }. N , the number of dimensions in

each training example and T can be different sizes, however, the dimensions must be

consistent for any given recognition task.

The target values can either be a finite number of discrete integer values, with one

integer value representing one category or class; alternatively the target values can be

one or more continuous variables. For the simple thresholding example, the output of

the model could therefore consist of either a discrete value, such as 0 for no trigger and

1 for trigger, or a continuous variable in the range [0.0 1.0] indicating the likelihood of

the performer’s hand being in the target zone. If the target values are a finite number of

discrete categories then the learning problem is referred to as a classification problem,

alternatively, if the learning problem is to output one or more continuous variables then

the task is called regression . As the work in this thesis is primarily focused on the

discrete recognition of a musical gesture, as opposed to the continuous mapping of a

gesture to a sound or control parameter, all of the algorithms presented throughout this

thesis are used to solve classification problems rather than regression problems.

2.1.2 Training a Model

The result of running a machine learning algorithm can be expressed as a function hφ(x),

parameterised by the model parameters φ, which takes an input vector x as input and

that generates an output vector y, encoded in the same format as the target vector t.

This is illustrated in Figure 2.1. The precise form of the function hφ(x) is determined

during the training phase, also known as the learning phase, on the basis of the training

data as illustrated by Figure 2.2.

A classification model for the simple thresholding example could therefore be represented

by:

hφ(x) ≡

h(x|φ) =

1, if x >= φ

0, otherwise
(2.1.1)

which would classify the input x as belonging to class 1 if its value was greater than

or equal to the threshold parameter φ, with all other values of x being classified as 0.

The objective of training this simple thresholding classifier could be to use the labeled

training data to estimate the best value for φ that maximises the number of correctly

Chapter 2. Background and Related Work 11

Figure 2.1: A machine learning algorithm, expressed as a function hφ(x) with input
x, output y and parameterised by φ.

classified training examples. The training algorithm used to estimate the best value for

φ could therefore be given by the following pseudocode:

Initialisation : Set φ to a random value

Training Loop :

1. Run all M training examples through the model using the current estimate

of φ to classify each training example as either class 0 or class 1

2. Calculate ξ, the classification error, which could be given by:

ξ =
Number of incorrectly classified examples

Number of examples

3. IF ξ has improved from the previous loop then update φ, return to step 1

IF ξ has not improved from the previous loop then stop the training process

The exact method for updating φ during stage 3 of the training loop will vary depending

on the actual optimisation algorithm being applied by the machine learning algorithm

used to train the model.

Chapter 2. Background and Related Work 12

Figure 2.2: An illustration of the training phase of a machine learning algorithm.
The precise form of the function hφ(x) is determined during this phase on the basis
of the training data. The resulting trained model can then be used to determine the

identity of new, previously unseen, input vectors.

2.1.3 Pre-processing

It is common for the original input variables to be pre-processed in some way to reduce

both the computational load and complexity of the recognition problem. The pre-

processing stage could consist of simply scaling or normalising the data to a standard

range, smoothing it to remove noise, or by transforming it into some new subspace of

variable, where it is hoped, the recognition problem will be easier to solve. This pre-

processing stage is sometimes also called feature extraction . It should be noted that

the new test data must be pre-processed using the same feature extraction method as

used in the training data.

2.1.4 Post-processing

In addition to pre-processing the raw data prior to input to a machine learning algorithm,

it is also common to process the output of a machine learning algorithm prior to using

its output to make a decision, such as either triggering or not triggering a sound to play.

This post-processing stage could consist of waiting for a number of consecutive ‘trigger’

classification results before a sample is triggered or by combining the classification re-

sults of a number of machine learning algorithms together to create one super-classifier.

The post-processing stage also enables the output of the machine learning algorithm

to be combined with some additional domain-specific information to provide additional

context, such as the performer is not even on stage yet so no samples should be played

Chapter 2. Background and Related Work 13

regardless of the output of the machine learning algorithm. Figure 2.3 illustrates the

processing chain for a generic gesture recognition system.

Figure 2.3: An illustration of the processing chain for a gesture recognition system.
The input data is first pre-processed, which could consist of simply smoothing the data
or extracting useful features, with the resulting processed data being used as input to
a trained classification algorithm. The output of the classifier is then post-processed,
which enables additional information such as context to be combined with the output
of the classifier before a final decision is made and output by the recognition system.

2.1.5 Underfitting, Overfitting and Model Selection

Care must be taken when training any machine learning algorithm, particularly when the

training sample size is small or when the number of parameters in the model is large. In

these instances, it is common for the model to give unreliable classification on any data

that did not feature in the training set. This is referred to as overfitting and occurs

when the model’s parameters are too closely fitted on the training data, resulting in

high variance in the model’s error rate (the percentage of incorrectly classified instances

in the data set). The opposite is true when the model’s parameters are poorly fitted

on the training data and is referred to as underfitting which results in a high bias

in the model’s error rate. To mitigate underfitting and overfitting, the model must be

presented with enough training data so that it can build a statistical model of the process

which generates the data, rather than learning an exact representation of the training

data itself.

To reliably test a trained model’s classification performance, the model’s error rate

should be calculated. It is unwise to use the resubstitution error (error rate on the

training set) as this can give poor predictions of the algorithm’s classification ability

on new data. It is useful therefore to have a method of estimating a model’s ability to

classify previously unseen input vectors, which can be achieved by calculating a model’s

Chapter 2. Background and Related Work 14

generalisation error . A number of generalisation error functions can be used to help

tune the parameters of a model. This can be achieved by using a small subset of the

training data to continuously train and test the model under different parameter values,

with the parameter values resulting in the lowest generalisation error then being used

to train the model using all the data.

2.1.6 Generalisation Error

The ability of a machine learning algorithm to correctly classify new input examples

that differ from those used to train its model can be measured by its generalisation

error. This is a quantitative error function that measures the trained models ability to

correctly classify a previously unseen input taken from a test set. If a large amount of

data is available (e.g. thousands of training examples) then the training set and test

set can easily be created by taking two independent samples and using one for training

and one for testing. In some instances, it is also useful to create a third data set called

the validation set which is used during an algorithm’s training phase to continually

tune the model’s parameters. In many real world applications, however, it can often be

expensive and time consuming to collect a large data set and simply segmenting the data

into a training and test set is inappropriate. This is particularly the case in MCI, where

each composer/performer may want to create their own recognition system and may not

want to spend time collecting hundreds of training examples for each of the gestures in

their vocabulary. In scenarios where only a limited amount of training data is available,

a hold-out procedure, where some of the data is held-out of the training set and used

for the test set, can be applied to access a reliable estimate of a trained algorithm’s

generalisation error. One of the most common hold-out procedures is cross-validation.

2.1.6.1 Cross-Validation

Cross-validation involves partitioning the data set into complementary subsets, training

the model on one subset (the training set) and validating the model on the second subset

(the test set). To reduce the variability of the generalisation error, multiple rounds of

cross-validation can be performed using different partitions and the validation results

averaged.

Cross-validation is a particularly apt method of estimating an algorithm’s classification

ability for MCI as it enables a model to be robustly tested with a limited amount of

training data. This therefore reduces the time required to collect the training data

(as less is required) and allows a performer to quickly test if the gestures they have

trained the algorithm with are senseable and aesthetically suitable. There are two

Chapter 2. Background and Related Work 15

common types of cross-validation: repeated sub-sampling validation and K-fold

cross-validation .

2.1.6.2 Repeated Sub-Sampling Validation

Repeated sub-sampling validation, as illustrated in Figure 2.4, involves randomly split-

ting the data set into a training data set and a test data set. For each random split, the

model is trained using the training-data and validated using the test-data. The results

are then averaged over the splits. The advantage of this method over K -fold validation

is that the ratio of the training/test split is not dependent on the number of iterations.

The disadvantage of this method is that some observations may never be selected in the

validation subsample, whereas others may be selected more than once.

Figure 2.4: One iteration of repeat sub-sampling validation.

2.1.6.3 K -fold Cross-Validation

K -fold cross-validation, as illustrated in Figure 2.5, involves partitioning the original

sample into randomly partitioned K subsamples (a K value of 10 is commonly used).

A single subsample is retained as the test data and the remaining K -1 subsamples are

used as the training data. The models predictive capabilities can be accessed using the

test data and the cross-validation process is then repeated K times, with each of the

K subsamples used exactly once as the validation set. The K results from each of the

folds can be averaged to produce a single generalisation estimation. This method has the

advantage over repeated random sub-sampling of using all observations for both training

and testing, with each observation being used for validation exactly once. One extreme

version of K -fold cross-validation is leave-one-out cross-validation, where the K value

is essentially set to M , the number of training examples in the data set. Although

Chapter 2. Background and Related Work 16

leave-one-out cross-validation has the advantage of making maximal use of the training

data available, it is extremely slow to perform as the machine learning model must be

trained and tested M times.

Figure 2.5: K -Fold Cross Validation, with a K value of 5.

2.1.6.4 Stratified Validation

Both of the cross-validation methods above have a stratified version in which the sub-

sections or folds are selected so that the mean response value is approximately equal

in all sub-sections. In the case of a dichotomous classification task, this means that

each sub-section or fold would contain roughly the same proportions of the two types of

class labels. This is particularly useful if the response values are unbalanced as an equal

distribution of response values will be present in both the training and test sets.

2.1.6.5 Cross Validation Error Measures

Cross-validation can be measured using any quantitative measure of fit that is appro-

priate for the data and the model. If for example the classification problem was binary,

each case in the test set is either correctly or incorrectly predicted. In this case the

misclassification error rate or the positive predictive value could be used to summarise

the fit. When the value being predicted is continuously distributed, the sum-of-squares

error, mean squared error, or root mean squared error could be used to summarise the

model’s generalisation error. These error functions are normally used instead of the

error’s absolute value as they allow the error function to be treated as a continuous

differentiable function (Bishop, 1995). The sum-of-squares error is simply the sum, over

all the samples in the training set, of a squared error between the output of the func-

tion h(xi) and that samples expected target value ti. The mean squared error and root

Chapter 2. Background and Related Work 17

mean squared error have the same properties as the sum-of-squares error, however they

have the advantage that their values do not grow with the size of the input-target data

set. The mean squared error and root mean squared error functions are therefore much

better suited when the generalisation error of a number of different sized data sets need

to be compared against each other.

The sum-of-squares error function is given by:

SSE =
M∑
i=1

{h(xi)− ti}2 (2.1.2)

where M is the number of training examples in the training set. The mean squared

error is given by:

MSE =
1
M

M∑
i=1

{h(xi)− ti}2 (2.1.3)

The root mean squared error is given by:

RMSE =

√√√√ 1
M

M∑
i=1

{h(xi)− ti}2 (2.1.4)

2.1.7 Validation Methods used in this Thesis

The primary method for estimating the generalisation abilities of the machine learning

algorithms presented throughout this thesis will be K -fold cross-validation. This is

because, as previously mentioned in this chapter, cross-validation is a particularly apt

method of estimating an algorithm’s classification ability as it enables a model to be

robustly tested with a limited amount of training data. This is extremely advantageous

for MCI because, as will be expanded in more detail in chapter 3.2, a machine learning

algorithm that can be quickly trained and tested using a limited number of training

examples is particularly useful for a performer. Such an algorithm, for example, would

facilitate the rapid prototyping and evaluation of any gesture-sound relationship the

performer thinks may be useful for a real-time performance scenario.

2.1.8 Applying Machine Learning to Gesture Recognition

As this section has shown, applying machine learning to solve a recognition problem

involves a number of fundamental changes in the tools, techniques and ways of thinking

commonly used to solve other computational problems. Unlike many other computa-

tional problem solutions, which are explicitly programmed by the developer, machine

Chapter 2. Background and Related Work 18

learning attempts to infer the solution to the problem directly from analysing example

data of the problem itself.

If the problem is to recognise a gesture, adopting a machine learning approach provides a

number of significant advantages over simply ‘hard-coding’ 4 a recognition system. Not

only is a machine learning algorithm more flexible than the hard-coding approach, as

once an algorithm is initially developed it can be applied to solve numerous recognition

tasks just by retraining a new model, it will frequently be more robust to any variability

or noise contained in the input to the algorithm. Machine learning algorithms can

also be used to solve complex, high dimensional, non-linear recognition problems for

which it could be almost impossible to simply hard-code a workable solution. In the

following section, a general review is provided of the application of machine learning for

the recognition of gestures throughout a wide range of areas within the field of human-

computer interaction. This is followed by a specific review of the application of machine

learning for the recognition of gestures throughout the domain of musician-computer

interaction.

2.2 Gesture Recognition for Human Computer Interaction

Gestural interaction with computational devices, and therefore the recognition of ges-

tures, has been the focus of research throughout many areas of HCI since the develop-

ment of early applications in the 1960s; such as Ivan Sutherland’s Sketchpad (Sutherland,

1964) which used an early form of stroke-based gestures using a light pen to grab and

manipulate graphical objects on a tablet display. Teitelman (1964) was one of the first

researchers to develop a trainable gesture recogniser that could classify hand drawn char-

acters in real-time. Several other pen-based recognition systems followed in the 1960s

and 1970s, such as the GRAIL system (Ellis et al., 1969) or in the AMBIT/G system

(Christensen, 1968); with this form of interaction now being widely accepted throughout

the HCI community (Karam, 2006).

Glove and magnetic sensor based systems, such as the work found in Bolt (1980), Zim-

merman et al. (1986), Sturman et al. (1989), Quek (1994) and Wexelblat (1995), received

a small amount of attention from researchers throughout the 1980s and early 1990s but

this research was limited due to the large expense and technical requirements of the

sensor technology. It was not until Freeman and Weissman (1995) first demonstrated a

camera based system that enabled gestures to control the volume and channel functions

of a television that the field of computer-vision rapidly started to grow. For the next

decade, the HCI gesture recognition community could be generally segmented into two
4explicitly programming a machine to look for value a followed by value b and then value c

Chapter 2. Background and Related Work 19

research categories, glove based recognition systems and computer-vision based recog-

nition systems.

2.2.1 Glove Based Recognition Systems

Glove based recognition systems, of which excellent reviews can be found in Sturman and

Zeltzer (2002) and Dipietro et al. (2008), provided the advantage of accurate tracking

of the fingers and the hands position and orientation. They still suffered, however, from

the limitations of the glove-based technologies in the 1980s in that they were often too

expensive or physically bulky to prove a main-stream commercial success. A number of

commercially available products were manufactured however, such as the Sayre glove,

MIT LED glove, Digital Data Entry Glove, DataGlove, Dexterous HandMaster, Power

Glove, CyberGlove and Space Glove (Dipietro et al., 2008).

2.2.2 Computer-Vision Based Recognition Systems

Computer-vision (CV) based systems, of which comprehensive reviews can be found in

Moeslund et al. (2006), Erol et al. (2007) and Wachs et al. (2011), have a number of

advantages over glove based systems in that the sensor technology is non-invasive and can

be relatively cheap to purchase. CV does, however, create a number of difficult problems

that need to be solved before any recognition system can be used, such as inferring the

pose and motion of a highly articulated and self-occluding non-rigid 3D object from

images (Moeslund et al., 2006). Human motion capture is one area of research that has

become increasingly active within CV, despite this flurry of work though the number of

main-stream commercial CV based recognition systems is still limited. The main-stream

application of gesture recognition systems was finally achieved in 2006 by Nintendo with

the launch of the Wiimote which was primarily based not on CV, but on an Inertial

Measurement Unit.

2.2.3 Inertial Measurement Unit Based Recognition Systems

An Inertial Measurement Unit (IMU) is a device that measures an object’s velocity,

orientation and the gravitational forces created within it as it is moved using a combi-

nation of sensors such as accelerometers, gyroscopes and magnetometers. The primary

advantage of an IMU based system is that it can be built very cheaply, therefore making

the main-stream commercialisation of such a system possible. The small size and low

cost of IMUs also makes them applicable for use in novel ways such as within mobile

phones, such as the work in Patel et al. (2004), Cho et al. (2007), Gillian et al. (2009) and

Chapter 2. Background and Related Work 20

Savage et al. (2010), or PDAs, such as the work in Harrison et al. (1998), Bartlett (2000),

Hinckley et al. (2000), Eslambolchilar et al. (2004), Strachan et al. (2007), Murray-Smith

and Strachan (2008), and many more.

IMUs have several advantages over CV based systems as they are not effected by poor

lighting conditions and are small, light, they are not constrained to the space viewable

by a camera, and they are robust enough to be easily attached to a user’s person -

thus making them particularly useful for a musician in a performance scenario. One

disadvantage of an IMU based system is that is it can be difficult to estimate the exact

position of the device because of the sensors employed within it. Nintendo overcame this

limitation by combining the accelerometer sensors with a simple infrared LED tracking

system which tracks two infrared beams emitted from a ‘sensor bar’ that the user places

either above or below their television set (Turner, 2007). The integration of IMUs within

mobile phones combined with the hacking of devices such as the Nintendo Wiimote has

helped generate an active research interest into IMU based recognition systems. The

Wiimote, for example, has been used as the primary sensor device in a large number

of gesture recognition systems, such as Sreedharan et al. (2007), Kratz et al. (2007),

Williamson et al. (2007), Rehm et al. (2008), Lee (2008), Fitz-Walter et al. (2008), Wu

et al. (2009), Kratz and Rohs (2010), Hoffman et al. (2010) and Wang et al. (2010) to

name but a few.

2.2.3.1 Custom Made IMU Recognition Systems

The low cost and small scale of inertial sensors has also encouraged a number of re-

searchers to develop their own specific IMU based recognition systems as a means of

providing research platforms that are independent from the hardware and software con-

straints of commercial products. Benbasat and Paradiso (2002), for example, developed

a six-axis IMU system consisting of a two two-axis accelerometer and three single-axis

gyroscope that could fully capture three-dimensional motion. This IMU device was

combined with a gesture recognition algorithm that could analyse the data as simple

motions, such as straight lines, twist, etc., with magnitude and direction. The recogni-

tion of these simple motions, which Benbasat refers to as atomic gestures, could then

be combined together in a simple scripting application to enable the recognition of full

composite gestures which could be connected to trigger a specific task or routine once

recognised.

Keir et al. (2006) created 3motion, a 3D gesture interaction system consisting of a

three-axis accelerometer and integrated bluetooth unit. This transmits a continuous

data stream to a general-purpose gesture interaction software running on a host device

Chapter 2. Background and Related Work 21

that matches the data against a library of 3D gestures to trigger actions. Junker et al.

(2008a) designed an IMU based recognition system for the detection of routine user

activities. The recognition system used a Hidden Markov Model (HMM) to recognise

user activities such as pressing a light switch or drinking a glass of water. Prior to a

window of data being classified using the HMM, a window of data was first divided into

motion segments and compared to a number of templates. If the system considered

a motion segment as possibly being part of gesture it was then sent to the HMM for

classification. Pylvänäinen (2005) also used a HMM to recognise a user’s hand gestures

captured by a 3D accelerometer embedded in a handheld device.

Finally, Liu et al. (2009) developed uWave, an accelerometer-based personalised ges-

ture recognition system that uses Dynamic Time Warping (DTW) to recognise a large

selection of gestures for user authentication and interaction on 3D mobile interfaces.

2.2.3.2 IMU Recognition Algorithms

In terms of the classification algorithms used to recognise gestures captured by IMU

based systems there is still no ‘perfect’ algorithm, although a small number of researchers

have reported excellent classification results of 95% and above (Junker et al., 2008a, Wu

et al., 2009, Liu et al., 2009, Li, 2010). Although no single recognition algorithm has

been named as the most suitable for the classification of dynamic gestures captured

by an IMU system, there are a number of algorithms that have consistently achieved

excellent recognition results. These are Hidden Markov Models (e.g., Chen et al., 2003,

Ward et al., 2005, Junker et al., 2008a, Park and Lee, 2011, Pylvänäinen, 2005, Al-

Rajab et al., 2008, Just and Marcel, 2009,Whitehead and Fox, 2009), Dynamic Time

Warping (e.g., Forbes and Fiume, 2005, Heloir et al., 2006, Liu et al., 2009, Leong et al.,

2009) and Support Vector Machines (e.g., Wong and Cipolla, 2006, Wu et al., 2009).

The recognition of IMU sensed gestures on mobile devices has also recently inspired the

development of novel recognition algorithms that are fast, accurate and yet require little

memory or processing over-heads to operate, such as the $1 algorithm (Wobbrock et al.,

2007), $3 algorithm (Kratz and Rohs, 2010) and Protractor algorithm (Li, 2010).

2.2.4 Gesture Recognition for HCI Summary

Gesture recognition has been used throughout HCI for over half a century, however,

it has only been in the last decade that gesture recognition based systems have been

successfully integrated into commercial applications. This has been made possible by

the ever decreasing cost of sensor devices combined with the extremely powerful machine

learning algorithms that have been specifically developed for gesture recognition. Novel

Chapter 2. Background and Related Work 22

interfaces like touch screens, IMU-based sensors, such as the Wiimote, and consumer

priced depth sensors, such as the Microsoft Kinect5, have made gestural control a viable

interaction paradigm. The next section looks at how gesture recognition has been used

to enable a musician to interact with a computer.

2.3 Gesture Recognition for Musician Computer Interac-

tion

Machine learning algorithms have been successfully applied to a number of tasks through-

out many areas of musician-computer interaction. Lee et al. (1992) and Fels (1995) were

some of the first to apply the broad history of machine learning research on Artificial

Neural Networks (ANN) to the field of MCI. Lee used an ANN to map the input from

a radio baton, sensor glove or a MIDI keyboard to audio output and Fels mapped the

input from a Cyberglove, 3-D tracker and a footpedal to a speech synthesiser. Fels work

was later extended by Pritchard and Fels (2006) who used several ANN to allow the

user to synthesise audio, speech and song in real-time. Modler et al. (2003) also applied

an ANN to map the sensor data captured by a sensor glove to continuously control the

parameters of a synthesis engine running in SuperCollider. Along with applying the

ANN to continually map the glove data to synthesis parameters, Modler also used the

ANN to recognise patterns in the glove data, such as the classification of certain hand

postures like thumbs up or an extended index finger. The recognition of a specific sym-

bolic hand gesture could then be used to trigger a sound, with the energy of the finger

movement being mapped to control the damping factor of a plate model. Cont et al.

(2004) created a number of ANN blocks for the Graphical User Interface (GUI) program

Pure Data (Pd) that allowed a user to quickly train the system to recognise dynamic

temporal gestures sensed by two perpendicular accelerometers. The network was trained

using six constant speed circle gestures and was able to satisfactorily recognise a large

variety of circles performed at different speeds and sizes.

A number of computer-vision based recognition systems have been created for the recog-

nition of musical gestures, such as EyesWeb which contains a suite of software tools that

have been applied to the classification of gestures on both basic (syntactic) and ad-

vanced (semantic) levels (Camurri et al., 2005). EyesWeb has also been used extensively

to analyse dancers’ movements, with the recognition of a specific gesture being used to

control various musical parameters (Camurri et al., 2004). Nash and Blackwell (2008)

used a motion capture system, consisting of a Vicon system using 8 cameras with mark-

ers placed on a pair of gloves and a belt that the user would wear, to recognise hand
5http://www.xbox.com/en-US/kinect

Chapter 2. Background and Related Work 23

and body gestures that enabled a user to interact with a real-time polytempi notation

system.

Merrill and Paradiso (2005) built the FlexiGesture, a two handed device that features

a number of sensors including 3-degree-of-freedom (DOF) accelerometers, 3-DOF gyro-

scopes, 4-DOF squeezing, 2-DOF bending and 1-DOF twisting. The user could train

the system to recognise up to 10 temporal gestures by pressing a ‘trigger’ button which

starts the data recording process, releasing the button when they had completed the

gesture. The system then asked the user to continually re-perform the gesture as it

trained a template model for that gesture. Dynamic Time Warping (DTW) was used

as the recognition algorithm and tests showed that the system was able to classify novel

gestures into one of 10 classes with up to 98% accuracy. Bettens and Todoroff (2009)

also used DTW to classify a performer’s gestures captured by two wireless sensors,

each containing 3-DOF accelerometers and 2-DOF gyroscopes, placed on the ankles of

the performer. Bettens and Todoroff (2009) implemented their DTW algorithm within

Max/MSP and Pure Data enabling the algorithm to be used to classify musical gestures

in real-time.

Fiebrink et al. (2009) created a real-time, on-the-fly machine learning-based system

called the Wekinator that could be trained by the user in a number of seconds. The

Wekinator allows the user the ability to quickly experiment with input/output mappings

and even form judgements on the quality of the mapping by training and running it in

real-time and observing the sonic results. The system was used for a live performance

in which 6 performers started the training/mapping process from scratch, live on stage,

and each performer gradually converged on the mapping setup they wanted as the piece

progressed. Fiebrink et al. (2009) extended this work by adding an additional ‘play-

along’ paradigm to the Wekinator in which the user listened to a specific piece of music

whilst mimicking the gesture they would have liked to have performed to make that

sound. The system was then trained on this gesture-sound relationship and the user

was able to create a sound or effect by performing the corresponding gesture.

Bevilacqua et al. (2007) developed a real-time continuous gesture recognition system for

Max/MSP in which a Hidden Markov Model could continuously output, not only the

likelihood of the user performing a given gesture at the current time, but also, where in

that gesture the user might be. One of the main benefits of this system is that it has

been specifically designed to be trained with the minimum possible training examples (in

some cases even 1 example can be sufficient) (Bevilacqua et al., 2009). Bevilacqua et al.

(2005) also developed the MnM toolbox for Max/MSP which is dedicated to mapping

between gesture and sound, applying algorithms such as Principal Component Analysis

(PCA) to reduce the dimensionality of the data, thus simplifying the mapping procedure.

Chapter 2. Background and Related Work 24

A number of researchers have focused on capturing the natural gestures performed on

acoustic instruments such as Overholt et al. (2009) who added a number of algorithms

from the OpenCV library to their Multimodal Music Stand System (MMSS) to recognise

the gestures of a flutist and used these to control a Max/MSP patch. Morales-Mazanares

et al. (2005) also tried to recognise the gestures of a flautist, using a probabilistic model

to estimate what the attacks or angular displacement of the instrument could infer

about the player’s gestures. The accurate classification of violin bowing gestures has

also received attention from Rasamimanana et al. (2006), Young (2008) and Fiebrink

(2011).

Finally, the recognition of a conductors gestures has given rise to a large body of re-

search, evolving from the seminal work by Mathews (1991b) who created the Radio

Baton, a low-frequency radio transmitter mounted at the end of a baton which was

sensed by an array of receiving antennae. This enabled the position of the baton to

be accurately tracked, with a simple thresholding algorithm being used to recognise

the conducting ‘beat’ gestures. A number of systems followed Mathews’ work that also

used customised batons and thresholding recognition algorithms, such as in the work by

Bertini and Carosi (1993) and Marrin (1996). Computer vision based systems have also

been specifically developed for the classification of a conductor’s gestures (e.g., Morita

et al., 1991, Murphy et al., 2004, Tarabella, 2005, Friberg, 2005 and Ilmonen, 2003). Sev-

eral other sensor technologies have been applied to capture a conductor’s gestures, such

as a custom-built conductor’s jacket (e.g., Nakra, 1999), accelerometers (e.g., Sawada

and Hashimoto, 1997, Dillon et al., 2006 and Bradshaw and Ng, 2008) and gyroscopes

(Hofer et al., 2009). Several researchers have progressed beyond simple threshold based

recognition algorithms and applied a number of machine learning algorithms to the

recognition of a conductor’s gesture, such as HMMs (e.g., Brecht and Garnett, 1995,

Wilson and Bobick, 2000 and Kolesnik and Wanderley, 2004) and ANNs (e.g., Ilmonen,

2003 and Bruegge et al., 2007), which were used to detect a conductor’s beat patterns,

recognise amplitude indicative gestures and classify nuances such as volume up, volume

down.

2.4 Musical Gestures

The work highlighted in section 2.3 has shown that machine learning algorithms have

been successfully applied to the recognition of musical gestures in a wide variety of

applications throughout musician-computer interaction. But what exactly are musical

gestures? As Cadoz and Wanderley (2000) have illustrated, the term gesture is difficult

to define; highlighting, from examples across a range of disciplines, the contrasting and

Chapter 2. Background and Related Work 25

sometimes contradictory use of the term gesture. Zhao and Badler (2001) and McNeill

(2000) have, however, tried to define a general framework that considers gestures from

the viewpoints of communication, control and metaphor.

1. Communication is involved when gestures work as vehicles of meaning in social

interaction. This use of the term is common in linguistics, behavioural psychology

and social anthropology.

2. Control is involved when gestures work as elements of a system, such as in the

control of computational and interactive systems. This is common in the fields of

human-computer interaction, computer music and similar areas.

3. Metaphor is involved when gestures work as concepts that project physical move-

ment, sound or other types of perception to cultural topics. This use of the term

is common in cognitive science, psychology, musicology and other fields.

Musical gestures pose an interesting problem in that they can be seen to cover all

three of the above areas. For example, musicians often use body gestures made by the

head, arms, hands or entire body to communicate with other performers live on stage.

Alternatively, a musician could use a specific hand gesture to control the amount of

reverb on their instrument or to trigger a computer to play a certain sample. Likewise,

musicians also use gestures to project metaphors to the audience, such as when a pianist

performs an aesthetic ‘follow-through’ hand movement after playing the final chord of

a piece. Based on work by Gibet (1987), Cadoz (1988), Delalande (1988), Wanderley

and Depalle (2004b); Jensenius et al. (2009) divide musical gestures into four functional

categories:

1. Sound-producing gestures, also called instrumental gestures (Cadoz, 1988) and

effective gestures (Delalande, 1988), are those that physically produce sound. They

can be further subdivided into excitation, the process of instigating a sound, such

as hitting a piano key, and modification, the process of changing the qualities of

sound, such as changing the pitch of a stringed instrument.

2. Communicative gestures, also called semiotic gestures (Wanderley and Battier,

2000), are intended mainly for communication and can be viewed in the same way

Kendon (2004) and McNeill (1992) use the term. Communicative gestures can be

further subdivided into performer-performer and performer-perceiver types

of communication.

3. Sound-facilitating gestures, also referred to as accompanying gestures (De-

lalande, 1988), non-obvious performer gestures (Wanderley, 1999) and ancillary

Chapter 2. Background and Related Work 26

gestures (Wanderley and Depalle, 2004a), support the sound-producing gestures

in various ways. They can be further divided into support, phrasing and en-

trained gestures.

4. Sound-accompanying gestures are not involved in the sound production itself,

but instead follow the music, for example, dancing. They are typically highly

expressive gestures and commonly either mimic the sound-producing gestures, like

air-guitar gestures, or involve movements that follow or ‘trace’ the sound.

These four functional categories and their sub-categories are illustrated in Figure 2.6.

Figure 2.6: An illustration of the four functional categories of musical gestures as
proposed by Jensenius.

2.4.1 The Musical Gesture Spectrum

It is clear from these attempts to define gesture, that the term can be interpreted in

a large number of ways. Musical gestures in particular pose a huge challenge to define

as they cover a broad spectrum of movements from the easily interpretable commu-

nicative semiotic gestures, such as an “OK” gesture, extending to the other end of the

spectrum to highly expressive gestures which can be highly ambiguous. Expressive ges-

tures, unlike highly communicative semiotic gestures, are ambiguous as they carry what

Cowie et. al. call implicit messages (Cowie et al., 2001) or what Hashimoto calls KAN-

SEI (Hashimoto, 1997). With an expressive gesture, unlike a semiotic gesture, how a

movement is performed is equally as important as what movement was performed.

Chapter 2. Background and Related Work 27

2.4.2 Higher Order Recognition

In many areas of HCI, the recognition of a gesture occurring is the primary concern. For

music however, the goal maybe not to just recognise that a particular gesture has been

performed, but to also recognise how that gesture was performed. For example, in 1990

Kurtenbach and Hulteen (Kurtenbach and Hulteen, 1990) defined a gesture as:

a motion of the body that contains information. Waving goodbye is a gesture.

Pressing a key on a keyboard is not a gesture because the motion of a finger on

its way to hitting a key is neither observed nor significant. All that matters

is which key was pressed.

For a musician however, the motion of the finger may indeed be significant. The musician

may want to know, not only that the key was pressed, but importantly how it was pressed

as this information could, for example, instruct the computer to trigger sample x with a

specific attack and decay (a slow attack and decay if the key was pressed ‘gently’ or a fast

attack and decay if the key was pressed ‘aggressively’). It is common to see in laptop

ensembles, for example, the performers sitting behind their computers gesticulating

enthusiastically in certain sections of a piece as they trigger samples and effects using

the keyboard. In this instance, their gestures have no control value (as the laptop is only

aware that a key has been pressed) and such gestures therefore serve as an enhanced

metaphor for the audience or as a communication method to other members of the

ensemble. By combining extra sensors, such as accelerometers worn on the performer’s

hands, with the laptop’s keyboard the performer could train the computer to recognise

what type of hand gesture was made prior to a particular key being pressed. Extracting

second-order parameters from a gesture, as opposed to simply recognising the gesture

itself, could therefore be used to give the performer an additional dimension of real-time

control.

This concept of parsing multiple degrees of information from one gesture via higher order

recognition can be utilised throughout the musical gesture spectrum, from clearly defined

semiotic gestures to ambiguous expressive gestures. For example, a deictic gesture such

as “put that there” could provide two degrees of information, namely the object and

the location the object should be placed. In a musical context, a conductor could direct

a specific hand posture towards a group of performers in an ensemble, indicating to

those musicians that they should perform whatever task was related to the current hand

posture of the conductor. At the other end of the musical gesture spectrum, a pianist

could perform a slow graceful follow-through gesture after playing a chord which could

instruct the computer to diffuse the chord in a specific pre-defined manner, using the

Chapter 2. Background and Related Work 28

velocity profile of the gesture to control for example an envelope placed on the diffused

sounds. The exact relationship between what another performer (or computer) should

infer based on the recognition of a particular gesture is open to interpretation by the

performers and is what Wanderley and Battier (2000) refers to as a Gestural Vocabulary,

also commonly referred to a Gestural Lexicon in certain fields of HCI and linguistics.

2.4.3 Musical Gestures Summary

A universal definition of the term gesture has still to be defined, despite the large body

of work covering multi-disciplines. The difficulty in creating a universal definition of the

term highlights how a gesture is contextually and culturally dependent. Musical gestures

add an extra layer of complexity and ambiguity towards creating a universal definition

of what a gesture might mean or infer as musical gestures cover both semiotic gestures,

which are highly communicative and easily interpretable, to expressive gestures, which

are highly ambiguous. The work in this thesis is based on the concept that a musical

gesture taxonomy does not need to be universally defined. This facilitates a musician

in creating their own unique definition of what they want their own musical gestures to

infer. This enables a performer to define their own gestural vocabulary that might be

used regularly with a group of other musicians or perhaps only once for a specific solo

piece.

2.5 Summary

This chapter has provided an overview of machine learning, presenting some key ter-

minology that will be used throughout the remainder of this thesis. It also provided a

review of the previous work conducted on gesture recognition within the field of human-

computer interaction, focusing specifically on the application of machine learning for the

recognition of musical gestures. The next chapter establishes the theoretical foundations

on which this thesis is based along with providing a workeable definition of the term

musician-computer interaction. This is followed by a discussion of gestural recognition

as a control paradigm for music along with providing some motivation as to why a per-

former might want to adopt a machine learning approach in order to teach a machine

to recognise their gestures.

Chapter 3

Gesture Recognition Systems for

Musician Computer Interaction

Without music, life would be a mistake.

Friedrich Nietzsche

This chapter sets out the theoretical foundations on which the remainder of the thesis

is based. It first describes in detail the area of research defined as musician-computer

interaction. This is followed by a discussion of why gestural interaction is a useful control

method for a performer and a discussion of why a musician may want to adopt a machine

learning approach in order to teach a machine to recognise their gestures. The common

design, development, training and evaluation strategies for gesture recognition systems

are then reviewed and the strategies of such systems for HCI and MCI are differentiated.

The chapter is concluded by presenting the SARC EyesWeb Catalog, a machine learning

toolbox that has been specifically designed for musician computer interaction.

3.1 Musician Computer Interaction

Musician-computer interaction (MCI), a subfield of the larger research area of human-

computer interaction (HCI), focuses specifically on technology that can enable musicians

to interact with computers. Music provides a number of interesting research challenges

over and above the more general field of HCI as, due to its real-time musical application,

a low-latency highly robust user-configurable system is required. Conventional HCI de-

vices, such as the keyboard and mouse, offer only limited scope for a musician to control

their audio software, particularly in a real-time performance scenario where the user

29

Chapter 3. Gesture Recognition Systems for Musician Computer Interaction 30

may want to have both discrete and continuous control over multiple parameters at the

same time. A performer, for example, may want to trigger on/off a number of samples

(discrete control) while at the same time continually modulating the cut-off frequencies

of a number of filters (continuous control). It is this, somewhat contradictory, require-

ment for fine-grain simultaneous control of multiple parameters that makes designing

interfaces for MCI such an interesting and challenging research area.

3.1.1 Existing Commercial Interfaces

In order to achieve this level of fine-grain multiple parameter real-time control; a large

number of specifically designed commercial pieces of hardware and software have been

developed. Hardware devices, like the Akai APC40 USB Performance Controller or the

Korg MicroKontrol MC1 (shown in Figure 3.2), combined with software programs, such

as Abelton Live1 or Max/MSP2, enable a musician to interact with a computer in a real-

time performance scenario in ways that would not be possible with more conventional

HCI devices. This is because hardware devices, like the APC40, provide a musician

with both multi-functional discrete and continuous control in the form of toggle but-

tons, sliders and knobs. Dedicated MCI hardware devices also importantly provide the

opportunity for the musician to specifically map the output from the device to the input

of the music software program being used, as illustrated in Figure 3.1.

Figure 3.1: In MCI, the user will typically want to create a custom mapping between
the hardware device and the music software it is connected to.

Using communication protocols such as Musical Instrument Digital Interface (MIDI)

or Open Sound Control (OSC) (Wright and Freed, 1997,) the status value of a button

or continuous value of a slider can be mapped by the user to control any audio setting

or parameter the performer wishes. This is a key factor in the design methodology

behind both hardware devices and software programs for MCI as a performer may desire

the functionality to customise both their hardware and software for their own specific
1http://www.ableton.com/live
2http://cycling74.com/products/maxmspjitter/

http://www.ableton.com/live
http://cycling74.com/products/maxmspjitter/

Chapter 3. Gesture Recognition Systems for Musician Computer Interaction 31

musical requirements. This degree of customisation could range from the basic mapping

of buttons and sliders in a mixer to match the corresponding controls in a software

program, such as Pro Tools3, to the user-specific mapping of a device to control an

audio program the user themselves may have designed, for example using software like

SuperCollider4 or Chuck5. This level of user customisation that occurs in MCI is one

of the main aspects that differentiates hardware/software design in MCI from the more

general field of HCI.

(a) The Akai APC40 USB Performance Controller (b) The Korg MicroKontrol MC1

Figure 3.2: Two MCI controllers that give the user the ability to have both multiple
parameter discrete and continuous real-time control.

3.1.2 New Interfaces for Musical Expression

The trend toward user-specific systems is evident well beyond the mainstream com-

mercial controllers, such as the APC40 or MicroKontrol, as a large body of musicians

regularly experiment with both designing and developing new MCI hardware and soft-

ware systems. Annual conferences, such as the New Interfaces for Musical Expression

(NIME) conference6, the International Computer Music Conference7 (ICMC) and the

Sound and Music Computing (SMC) conference8, all feature dozens of examples each

year of new developments in hardware and software that have been specifically designed

for MCI.

Free, customizable music-software, such as Pure Data9, SuperCollider or Chuck, facili-

tates performers to create their own uniquely-tailored audio systems. A large number
3http://www.avid.com/US/products/Pro-Tools-Software
4http://supercollider.sourceforge.net/
5http://chuck.cs.princeton.edu/
6http://www.nime.org/
7http://www.computermusic.org/
8http://smcnetwork.org/
9http://puredata.info/

http://www.avid.com/US/products/Pro-Tools-Software
http://supercollider.sourceforge.net/
http://chuck.cs.princeton.edu/
http://www.nime.org/
http://www.computermusic.org/
http://smcnetwork.org/
http://puredata.info/

Chapter 3. Gesture Recognition Systems for Musician Computer Interaction 32

of performers are now also making use of the cheap open-source electronics platforms,

like the Arduino10, to create their own custom built sensor interfaces that can be used

to gain real-time control over their specific audio systems. The combination of the ever-

decreasing cost of sensor devices along with the hacking of existing motion controllers,

such as the Nintendo Wiimote11 or Microsoft Kinect12, have now made it possible for a

large number of composers, performers and researchers to use the data from these sensors

as controllers for their music software. This has made accessible an exciting interaction

paradigm, that was previously only feasible for a minority of researchers and engineers,

in enabling a performer to use their own body gestures to interact with a computer.

This trend is further supported by the fact that most undergraduate and graduate level

courses in the broader area of ’music technology’ now typically include modules on inter-

action design for music that provide student performers, composers and sound engineers

with the skills to design and build their own digital musical instruments. Examples

of these courses include SARC’s Live Performance Systems module, CCRMA’s HCI

Performance Systems for Music course13 and Princeton’s Human-Computer Interface

Technology course14.

3.1.3 Gestural Interaction

Gestural interaction is of particular use to a musician as it enables them to control a

specific parameter or effect, even if their hands are busy playing an instrument. Gestural

interaction enables a musician to use aesthetic, expressive gestures to control a computer

which is of great benefit in a live performance scenario. One key advantage of using

gestural interaction for MCI is that it could enable the performer to control multiple

parameters of a sound, such as pitch, timbre and on-set amplitude, simultaneously.

This real-time control over multiple degrees of freedom is even difficult with current

commercial MCI devices, therefore making gestural control a rewarding research area.

Gestural interaction would facilitate a musician to augment their own acoustic instru-

ment with additional sensors, enabling them to control a synthesis program in real-time

by performing a number of musical gestures, creating what Wanderley calls a Digital

Musical Instrument (DMI) (Wanderley and Battier, 2000). It would also importantly

enable a performer to control the synthesis program on a machine without using any

physical instrument at all; allowing the musician to play what Mulder calls a Virtual
10http://www.arduino.cc/
11http://www.nintendo.com/wii
12http://www.xbox.com/en-GB/kinect
13https://ccrma.stanford.edu/course-overviews/music-250b
14http://www.cs.princeton.edu/courses/archive/fall07/cos436/

http://www.arduino.cc/
http://www.nintendo.com/wii
http://www.xbox.com/en-GB/kinect

Chapter 3. Gesture Recognition Systems for Musician Computer Interaction 33

Musical Instrument (VMI) (Mulder, 1994). Alternatively, gestural interaction could fa-

cilitate a performer to use musical conducting gestures to simultaneously interact with

a number of performers and a computer with one succinct movement.

3.1.4 Teaching A Machine To Recognise Musical Gestures

But how can a performer control a machine through the medium of musical gestures? To

facilitate a performer to interact with a computer using musical gestures, the computer

must be able to first sense the gestures, secondly recognise the gestures and finally

know how to respond to the gestures. Thankfully, due to the ever-decreasing cost of

sensor devices along with the hacking of existing motion controllers, performers now

have access to the technology required to sense the vast majority of musical gestures.

The task of instructing a computer how to respond to the recognition of a gesture has

also been greatly simplified, thanks to the inherent flexibility of the existing pieces of

real-time composition and performance software, as the computer just needs to know

which process to trigger or manipulate when gesture x has been recognised. This just

leaves the task of teaching a computer how to recognise a gesture.

In reality, the musician’s goal is not to get the computer to ‘understand’ the musical

gesture but instead the objective is to somehow teach the computer to recognise the

underlying pattern that occurs in the sensor data when a given musical gesture is per-

formed. The computer will then know that it should perform task x the next time it

detects pattern y in the sensor data. So how can a computer be ‘taught’ to recognise

the patterns contained in sensor data that might be associated with the performance

of a musical gesture. One approach would be for the musician to perform the musical

gesture, study the associated sensor data and then manually program a simple recog-

nition algorithm that will trigger task x when the sensor data passes a given threshold

value. Setting this threshold value manually may be a trivial matter if only one sensor is

being used or if just one gesture needs to be recognised; however this quickly becomes a

complex task if more than one sensor is being used, several threshold values are required

or multiple gestures need to be recognised. The complexity of the task increases further

if more intricate patterns need to be recognised, particularly patterns that evolve over

time or in a multi-dimensional space. It is in these instances that a performer may want

to adopt a machine learning approach in which the computer ‘learns’ how to recognise a

gesture by directly analysing a number of examples of the sensor data that is associated

with each gesture.

Chapter 3. Gesture Recognition Systems for Musician Computer Interaction 34

3.1.5 Adopting A Machine Learning Approach

By adopting a machine learning approach, a musician can teach a computer to recognise

a set of G gestures by creating a training set consisting of a number of recordings of the

musician performing each gesture (captured by whichever sensor device the performer

thinks is most appropriate for the recognition task). The training set is then used to

tune the parameters of an adaptive model using a machine learning algorithm with

the objective that, once trained, the model can correctly output a specific value when

given a specific input value. This could be a discrete value representing one of the G

gestures in a classification task or a continuous variable in a regression task. If the

appropriate sensor(s) or feature(s) are used to represent each gesture and a suitable

machine learning algorithm is trained then the algorithm should be able to classify a

new input vector as one of the G gestures it was trained with; even if the new input

vector was not contained in the original training set. This would therefore enable a

musician to use the classification abilities of a trained machine learning algorithm to

recognise the performer’s musical gestures in real-time live on stage.

3.1.6 Applying Machine Learning To MCI

By adopting a machine learning approach, a performer can employ a large number of

very powerful tools to facilitate musical gestural interaction. The actual application of

these machine learning tools is not, however, a simple task as the implementation of

a machine learning algorithm can prove difficult for even proficient software engineers.

This is not only due to the mathematical complexity of many machine learning algo-

rithms, but is also related to the ways in which applying machine learning is different to

traditional programming. Traditional programming, for example, allows developers to

explicitly describe the behavior of a program, whereas systems that use machine learning

must learn or infer these behaviors from the training data. Although machine learning

libraries, such as Weka, and dedicated development environments, such as Gestalt (Patel

et al., 2010), are enabling the integration of sophisticated machine learning algorithms

within a developer’s software program; this still precludes any musician with limited or

no programming skills.

It would therefore be beneficial for a musician to have access to a system that enables

the user, regardless of their technical skills, to apply any number of machine learning

algorithms to classify their musical gestures. As a classifier rarely exists in a vacuum

(Duda et al., 2001), any recognition system that facilitates a musician in using a machine

learning algorithm to classify their musical gestures must also allow the user to specify

Chapter 3. Gesture Recognition Systems for Musician Computer Interaction 35

which feature extraction method should be applied to the raw data or which post-

processing method should be applied to the output of the classifier. But how should

such a recognition system work? Can the design and training strategies employed for

the recognition systems in other areas of HCI be directly applied to MCI? Can a generic

one-size-fits-all ‘black-box’ pre-trained recognition system be created for music? This

thesis argues that such a generic recognition system is completely impracticable for

musical gestures and that the design and training strategies adopted throughout many

areas of machine learning and HCI need to be reevaluated for MCI. Section 3.2 provides

the evidence for the reevaluation of the common design, development, training and

evaluation strategies for application of gesture recognition systems for MCI.

3.2 Gesture Recognition Design Strategies For MCI

The design, development, training and evaluation of gesture recognition systems for

MCI requires a paradigm shift from the common strategies employed in other areas

within HCI that also use gesture recognition. This is due to the three main aspects that

differentiate the systems that use gestures in MCI compared with that of other areas

within HCI:

1. Input Ambiguity: For MCI, a musician may want to use many forms of sensing

devices, from commercial devices such as a webcam or Wiimote to custom designed

hardware. The input to a MCI gesture recognition system, and therefore the input

to the recognition algorithms within such systems, may not be known in advance.

2. Output Ambiguity: For MCI, a musician may want to use any number of com-

mercial pieces of audio software or could have built their own specific audio soft-

ware for real-time composition and/or performance. Therefore the software that

the output of a MCI gesture recognition system is connected to may not be known

in advance.

3. User-Specific Gestural Vocabularies: For MCI, the gestural vocabulary (the

relationship between a gesture and its corresponding action) being used by the

musician could be unique to that performer or could even have been specifically

designed for a single instrument or composition.

The common thread that links these points is that because the fundamental components

of a musical gesture recognition system are ambiguous, i.e. its input, what it recognises

and what it controls, the system cannot be trained prior to being distributed to the

community of end-users.

Chapter 3. Gesture Recognition Systems for Musician Computer Interaction 36

3.2.1 Gesture Recognition Systems for HCI

In contrast, the designers and developers of a gesture recognition system for HCI, such as

that used in computer games or in the classification of sign language, will be fully aware

of what the input to the system is. They will also know what the output of the system

will be controlling, such as the movement of a character in a game, and will know which

gestural vocabulary is being used, such as the American Sign Language. This provides

the developers of such systems the opportunity to develop, train, test and refine the

underlying recognition of each gesture; ensuring that a robust recognition system is

distributed to the end-user. Commercial HCI gesture recognition systems need to have

excellent generalisation abilities; as the majority of end-users will not have contributed

to the training set used to create the underlying recognition models. This means that a

large amount of training data, recorded from perhaps hundreds of users, is required to

ensure a robust generalisable recognition model.

There are, of course, exceptions to this generalisation of pre-defined gestural vocabular-

ies within HCI. User-defined gestural vocabularies have been applied in areas such as

mobile phone security (e.g., Farella et al., 2006) along with an interface design concept

that exploits a user’s ability to use their own body space as an interface to a mobile

device (e.g., Angesleva et al., 2003). These examples, however, represent only a small

percentage of areas within the field of HCI that have employed user-defined gestural

vocabularies, with the majority of gesturally controlled systems using a pre-defined ges-

tural vocabulary.

3.2.2 Gesture Recognition Systems for MCI

For MCI, however, it would be difficult to create the pre-trained recognition systems

that are common throughout HCI. This is because it is almost impossible to establish

a pre-trained universal musical gestural vocabulary that works for every composer and

performer in every musical context. It would be possible to create pre-defined systems

for several commercial music applications, such as using the built in web camera of a

computer to recognise the hand gestures of the user to control the playback functionality

of a music player. In this example, it would be easy to think of a number of basic hand

gestures that could easily be learned by the user to control commands such as play, stop,

next track etc. and such a system could therefore be pre-trained and ready for use when

purchased.

However, this type of pre-trained system will not be applicable for the majority of

other musical interaction scenarios, such as for a live performance. As section 2.4 has

Chapter 3. Gesture Recognition Systems for Musician Computer Interaction 37

illustrated, even defining the term gesture is difficult as musical gestures cover a broad

spectrum of movements from the easily interpretable communicative semiotic gestures,

such as an “OK” gesture, to highly expressive gestures which are ambiguous. For music,

therefore, a fixed pre-trained universal gestural vocabulary may not be a viable solution,

as each composer or performer may want to define their own vocabulary to use for a

specific instrument or even just one piece. A fixed, pre-trained vocabulary would also be

pointless in this instance as a common sensor platform would be required for the system

to recognise any of the pre-trained gestures being performed, rendering any custom piece

of MCI hardware useless.

3.2.3 The Intra-personal Generalisation Goal

What would be much more practical for a musician, particularly in a live performance

scenario, is a system that features a flexible input/output configuration and that can be

trained quickly using gestures from the performer’s vocabulary. Such a system would not

require the inter-personal generalisation abilities found in other areas of HCI; instead it

would simply need to provide a good intra-personal generalisation for the one performer

that initially trained the system. If another performer wanted to use their own input

device or gestural vocabulary to control the same audio software, then they would simply

have to retrain the machine learning system with their own gestures. This intra-personal

generalisation goal, which represents a considerable paradigm shift from many areas of

machine learning and HCI, would not only offer the performer the advantage of being

able to use their own hardware to capture gestures from their own gestural vocabulary

and use these to control their own specific audio software, it would also result in the

requirement for a lower number of training examples per gesture - leading to a reduced

amount of time spent in data collection and computational-training time.

3.2.4 Fast Training, Fast Testing, Fast Prototyping

For MCI, it is essential that the training process of each machine learning algorithm

occurs as quickly as possible. An efficient training phase will enable a performer to

quickly decide upon a possible gestural vocabulary to use, train the recognition system

and then, importantly, test the real-time prediction abilities of the system by performing

the gestures and checking whether they have been correctly classified. Testing the system

in this manner not only validates if a robust intra-personal generalisation error has been

achieved, it also tests the aesthetic and practical validity of the gestures themselves. If a

performer is unhappy with either then they can choose to change the feature extraction

method or parameters of the machine learning algorithm being used and retrain the

Chapter 3. Gesture Recognition Systems for Musician Computer Interaction 38

model. Alternatively, if the gestures are either aesthetically or practically unsuitable,

the performer could remove one or more of the gestures from the training set and replace

them with more suitable movements. In ensemble performances, for example, a group

may decide to change subtle communication gestures, and it would be important that

an MCI system could adapt to absorb such changes, even at very short notice. A

recognition system that can be quickly trained and tested will enable a musician to

rapidly prototype any action-sound relationship they think may be useful for a real-time

performance scenario, test the validity of such gestures and then focus their time on the

musical elements of the performance.

3.2.5 The Bias-Variance Tradeoff

Care must be taken, however, in the design and development of any gesture recognition

system or machine learning algorithm that is to be used for MCI. Constraints would need

to be put in place, for example, to stop the algorithms under-fitting or over-fitting when

a limited number of training examples are used in the models training phase. A general

assumption commonly made in the design of many machine learning algorithms is that

the variability observed within the training set will roughly estimate the variability of

any similar data in a test set. A model should therefore be able to successfully estimate

the limits of this variability, and thus correctly estimate the decision boundaries that

determine what a new datum is classified as, when a large training set is used. What

if, however, a performer knew that the data set they were using to train an algorithm

would not accurately represent the inherent variability of that data? For example, if the

training set only contained two training examples per gesture for each of the G gestures

the performer wanted the algorithm to recognise. In this instance it would be beneficial

for the performer to make the algorithm over-estimate the variability of the small training

set by weighting the algorithm to favor a high-bias when training the model as opposed

to high-variance and thus prevent the model from over-fitting its parameters on the

small training set. A parameter that allowed the performer to control the bias-variance

tradeoff of an algorithm would facilitate the performer in initially training a model with

a very small data set, enabling the performer to quickly validate whether the gestures

are appropriate. If the performer is satisfied with their gestural vocabulary they can

then choose to record additional training examples for each gesture, reduce the ‘ bias-

variance’ parameter to its default value and retrain the algorithm to create a more robust

model.

Chapter 3. Gesture Recognition Systems for Musician Computer Interaction 39

3.2.6 Adaptive Models

An alternative to training a model from random initialised values for each gesture is to

use a machine learning algorithm that could, once trained, slowly adapt its model over

an extended time period. This would enable the performer to initially train a model

with a small training set and set the bias-variance parameter to a value to mitigate

under-fitting or over-fitting. The model could then be used to classify the performer’s

gestures in real-time, while in parallel combining the real-time data with the original

training data to continuously retrain and refine the model’s parameters. As the size of

the training data set increased the bias-variance parameter could slowly be reset to its

default value. Care must be taken, however, in the design of an adaptive algorithm. This

is because any ‘new’ training data collected during the online prediction phase will have

been self-labeled by the algorithm and therefore a small number of incorrectly labeled

training examples could create a ‘run-away’ model that becomes less effective at each

update step. Precautions would therefore need to be put in place to ensure the model

did not update itself too quickly to help mitigate against a run-away model.

An adaptive algorithm that increased its generalisation abilities at each update would not

only enable a performer to quickly train the system with their own gestural vocabulary,

it would also allow the algorithm to adapt its trained model as a musician adapts their

own movements. For example, an adaptive algorithm could slowly optimize its trained

models over the course of a rehearsal period, refining an algorithm’s parameters as the

performer slowly refines their own gestures. This would also facilitate new paradigms

for musical pedagogy, allowing a musician to play an instrument that also learns in

parallel with its user. Over time an algorithm’s parameters could be slowly optimized as

a performer increases their skill level and knowledge of a particular instrument or piece,

providing the performer with more degrees of freedom and more fine-grain control as

the player’s skill and abilities increase over time.

3.2.7 Error Tolerances

One of the key aspects for the recognition of discrete musical gestures is that a performer

will have little tolerance for any classification-errors made by the system. This is because,

unlike the continuous mapping of a movement to a sound or parameter, the recognition of

a discrete gesture will be used to trigger or control a discrete event. A musician therefore,

particularly in a live performance scenario, will not want to have to perform the same

gesture repetitively until it is recognised by the system and the corresponding event

is triggered. False-positive classification errors will also not be tolerated, as this type

of error could drastically affect the performance of a piece, triggering an inappropriate

Chapter 3. Gesture Recognition Systems for Musician Computer Interaction 40

sample or effect to be played at the wrong time or incorrectly progressing the piece

to the wrong section. The machine learning algorithms employed for the classification

of discrete musical gestures must therefore, above all else, give very high classification

results.

3.2.8 Risk

Along with controlling the bias-variance tradeoff of an algorithm it would also be bene-

ficial for a performer to have control over how an algorithm uses the classification result

to make an actual decision, such as whether a sound should be triggered or not. A

performer may want to simply train an algorithm to achieve the minimum-error-rate

classification, with the ‘cost’ of the algorithm making a false-postive classification er-

ror being equal to the algorithm failing to recognise an actual gesture. However, some

performers may want to weight the cost of one type of error over another, creating a

recognition system that will minimize the total expected cost, or risk, of making a specific

type of classification error. A musician, for example, might want a recognition system

to be as robust as possible against making false-positive classifications at the expense of

the system failing to recognise a small number of their musical gestures. The performer

might even want to control a recognition systems risk dynamically, re-weighting the cost

of making one type of error at section a of a piece and changing this weighting value at

section b of the piece.

3.2.9 Validating An Intra-Personal Classification Algorithm

For MCI, it is important for a performer to evaluate an algorithm both qualitatively and

quantitatively. Qualitative testing, where the performer trains a model and then tests

the algorithm in real-time by performing each gesture hoping the system will correctly

classify that gesture, not only validates the classification abilities of the algorithm but

it also tests the aesthetic and practical validity of the gestures themselves. Qualitative

testing also evaluates other practical issues such as recognition latency or real-time

processing overheads. Quantitative testing, where the performer trains a model with a

training set and then tests the model with a test set containing previously unseen data,

is important as it helps to estimate the generalisation abilities of the algorithm for a

specific recognition problem. The quantitative classification results can then be used to

inform other performers or researchers who might have a similar recognition problem as

to which is the most suitable algorithm for that given task.

Chapter 3. Gesture Recognition Systems for Musician Computer Interaction 41

An intra-personal generalisation error would call for a new quantitative method of eval-

uating the classification abilities of a machine learning algorithm. For example as previ-

ously described in chapter 2.1.6, in many machine learning applications, a large amount

of data is collected from perhaps hundreds of users and the data is split into a training

set and a test set. The machine learning algorithm is then trained with the training set

and evaluated with the test set. If the training data is difficult or expensive to acquire,

then a hold-out validation method such as K-fold cross-validation is used instead. Both

of these validation methods are suitable for estimating the generalisation abilities of an

algorithm that will be used in an inter-personal recognition system. These methods are

not suitable for validating the intra-personal classification abilities of an algorithm how-

ever; as they assume that either a large amount of training data is available and/or the

training data from several different users can be combined into one combined data set. A

more suitable generalisation metric for MCI would be to use the average cross-validation

error (ACVE) calculated by independently computing the cross-validation error for N

participants and then averaging this result. The ACVE is suitable for MCI because it

can accurately estimate the intra-personal generalisation abilities of a machine learning

algorithm, while at the same time being validated by a large number of different users to

ensure that the estimated generalisation abilities of an algorithm are not misrepresented

by one ‘good’ or ‘bad’ participant.

3.2.10 Design Strategies Summary

The design, development, training and evaluation strategies for any gesture recognition

system that will be used for MCI therefore require a paradigm shift from the common

strategies employed in other areas of HCI and the machine learning community. This

is to enable a user to create, train, test and refine a recognition system that the user

thinks is most suitable to solve their recognition problem. The design strategies for a

gesture recognition system for MCI can therefore be summarised as:

- Design:

The algorithms used for the recognition of musical gestures should be designed to

work with any N -dimensional signal so that they are not constrained to work with

the data or features from a specific sensor. They should also be designed to enable

the user to adjust specific settings such as the bias-variance tradeoff or minimize

the risk of the system making a specific type of error.

- Development:

A gesture recognition system and the machine learning algorithms within such a

system should be developed in a manner that enables the user to configure the

Chapter 3. Gesture Recognition Systems for Musician Computer Interaction 42

system in whatever way they think may result in the best classification of their

gestures for their particular needs. This includes being able to use any sensor as

input to the system and route the output of the system to control whatever audio

software the performer maybe using. The performer should also have the option to

specify their own recognition chain; i.e. choosing a pre-processing method to use on

the raw sensor data, the feature extraction algorithm to apply to this data and what

features should be input to the machine learning algorithm, and finally to select

the post-processing functions that should be applied to the output of the classifier

to make the final classification decision. This should all be developed in such a

manner that enables a performer with even limited technical or programming skills

to use the system.

- Training:

Any machine learning algorithm for MCI should be optimized to be trained quickly

using a small number of training examples. Once trained the model should achieve

a low intra-personal generalisation error.

- Evaluation:

The machine learning algorithms used for the recognition of musical gestures

should be evaluated to test the intra-personal generalisation abilities of the al-

gorithms using a suitable error measure such as the average cross-validation error.

3.3 Creating a Gesture Recognition System for MCI

Using the design strategies outlined in section 3.2, a review and evaluation of the current

gesture recognition systems and machine learning toolboxes that were freely available in

the MCI, HCI and machine learning communities was conducted to establish whether any

of these toolboxes met the criteria. A large number of machine learning software tools

exist, either within mathematical analysis programs such as Matlab15, as standalone

libraries that can be integrated into a developer’s own software environment such as

the WEKA machine learning library (Hall et al., 2009) or the LIBSVM (Chang and

Lin, 2001) Support Vector Machines library, or as previously mentioned in 2.3, within

higher-level GUI based applications such as Max/MSP and Pure Data. However, despite

the large number of machine learning toolboxes available, it was very difficult to find

an existing software tool for gesture recognition that had been developed for on-line

recognition, was not built for a specific sensor device, such as a mouse or camera, that

was not designed for a audio environment and did not have to work with a pre-trained

gestural vocabulary.
15http://www.mathworks.co.uk/

http://www.mathworks.co.uk/

Chapter 3. Gesture Recognition Systems for Musician Computer Interaction 43

Out of all the toolboxes and gesture recognition systems that were reviewed, the Wek-

inator (Fiebrink et al., 2009) was the only software that came close to fulfilling the

design criteria outlined in section 3.2. Its main drawback, however, was that it did not

contain any recognition algorithms that could be used for the real-time classification of

temporal musical gestures.

The lack of a system that fulfilled the design criteria outlined in section 3.2 therefore

motivated the design and develop of software that could be used to enable gesture

recognition for MCI. Rather than design and develop a recognition system from scratch,

it was decided to build upon an existing software environment that would facilitate

the addition of the feature extraction and machine learning algorithms that could be

used specifically for MCI. After reviewing a number of suitable programs that allow

the addition of third party libraries, such as Max/MSP, Pure Data and Simulink, the

free program EyesWeb16 was chosen as the most appropriate base platform to develop

a dedicated machine learning toolbox for MCI.

3.3.1 The SEC

The dedicated MCI machine learning toolbox, called the SARC EyesWeb Catalog (SEC),

has been fully integrated as a third party library within EyesWeb. EyesWeb is an open

software platform that was established to support the development of real-time multi-

modal distributed interactive applications and already features a large number of algo-

rithms for processing both video, audio, and generic data signals (details of which can

be found in Camurri et al., 2004 and Camurri et al., 2007). The SEC therefore adds

a complementary set of machine learning algorithms to the existing algorithms within

EyesWeb.

EyesWeb is a GUI orientated program (that runs on the Microsoft Windows17 operating

system) which features a patch window onto which the user can drag a number of blocks

that represent a specific algorithm or function. A block, as shown by Figure 3.4, will

commonly feature a number of input, output and parameter pins, with one block’s

output pin being connected to another block’s input pin to create a signal flow between

the two respective blocks. EyesWeb functions in two modes, the design mode and the

run mode. In the design mode, the user can add new blocks to the patch window,

delete existing blocks from the patch window, connect one block to another block and

so on. In run mode, the data will actually be passed between blocks, sent and received

over network connections, processed and analysed. Using a small number of blocks in

EyesWeb, for example, a performer could build a patch to capture real-time data from
16http://www.infomus.org/EywMain.html
17EyesWeb is currently being ported to the Linux operating system

http://www.infomus.org/EywMain.html

Chapter 3. Gesture Recognition Systems for Musician Computer Interaction 44

Figure 3.3: A number of example EyesWeb patches. The three patches shown are
all example patches for the SEC blocks that enable a novice user to understand how a

block can be used and provide a working demo that the user can interact with.

a sensor unit, filter the data and plot the results without having to write a single line of

code, as shown by Figure 3.5. EyesWeb also enables any performer with more technical

skills to develop their own blocks, which may be required to perform a specific type

of feature extraction or to interface with a certain piece of hardware. All the blocks

in EyesWeb are written in c++, giving the developer the ability to write fast, efficient

code which is a necessity for real-time machine learning due to the large number of

calculations required. EyesWeb therefore provides an excellent environment for both

technical and non-technical users as complex signal processing operations can be easily

constructed by connecting a number of blocks together or alternatively a custom block

can be developed to perform one specific task.

3.3.2 The SEC Blocks

The SEC (Gillian et al., 2011b) features over 80 blocks that have been specifically

designed as a result of the work reported in this thesis for the recognition of musical

gestures. The SEC blocks are organised into the following 5 categories:

• General:

This contains some rudimentary blocks that can load/save data, cyclical buffers

and blocks that convert from one data type to another etc.

• Math:

This contains blocks for a number of mathematically functions such as normalisa-

tion and scaling, vector and matrix operations, calculating first and second order

derivatives, integration and mapping tools etc.

Chapter 3. Gesture Recognition Systems for Musician Computer Interaction 45

Figure 3.4: An SEC FIR filter block, showing the input pin, parameter pin and output
pin.

Figure 3.5: A basic EyesWeb patch showing how the output from a sensor device
(in this case the accelerometer signal from the SHAKE SK6) can be filtered and the

resulting signal visualized without the user having to write one signal line of code.

Chapter 3. Gesture Recognition Systems for Musician Computer Interaction 46

• Gesture Recognition:

This contains a number of blocks that can be used for gesture recognition. This

includes some common machine learning algorithms such as: Artificial Neural

Networks, Hidden Markov Models, Support Vector Machines, K-Means cluster-

ing, Fuzzy C-Means clustering, K-Nearest Neighbor classification and State Ma-

chines along with a number of common feature extraction methods such as Vector

Quantization, Principal Component Analysis and Symbolic Aggregate Approxi-

mation. The gesture recognition category also features a number of algorithms

that have been specifically developed for the recognition of musical gestures such

as the Adaptive Naive Bayes Classifier (Gillian et al., 2011a) and N -Dimensional

Dynamic Time Warping (Gillian et al., 2011c). These algorithms will be the focus

of the upcoming chapters.

• Sensor Units:

This contains a number of blocks for interfacing directly with hardware sensor

units such as the Wiimote, the SHAKE and Infusion System’s Wi-microDig18.

• Signal Processing:

This contains a number of blocks for performing signal processing operations, such

as filtering, dead-zone and envelope extraction.

3.3.3 Using the SEC for MCI

The machine learning algorithms within the SEC enable a performer to use one or more

musical gestures to control and manipulate the performer’s composition or improvisa-

tion software in real-time. For example, a musician could use a classification algorithm

such as N -Dimensional Dynamic Time Warping (ND-DTW) to classify a specific con-

ducting gesture and use the recognition of this movement to trigger the computer to

start manipulating the live audio recording of the musician the gesture was directed

towards. At the same time, the performer could use a regression algorithm like an Ar-

tificial Neural Network (ANN) to continuously map the velocity at which the performer

made the conducting gesture to control the degree of the warping effect on the live audio

recording.

3.3.4 Middleware Design Architecture

Rather than targeting the SEC for just one specific piece of audio software, it has

been designed to function as middleware enabling the user to pipe their sensor data
18http://infusionsystems.com

http://infusionsystems.com

Chapter 3. Gesture Recognition Systems for Musician Computer Interaction 47

into the SEC via a number of standard communication protocols, such as Open Sound

Control (OSC) (Wright and Freed, 1997). After recognition the classification results

can be piped out of the recognition system to control any piece of audio or visualization

software that use the same communication protocols, as illustrated by Figure 3.6. A

middleware design architecture also enables the SEC to run on an independent machine

from that which is running the audio software which is beneficially for CPU intensive

recognition algorithms. A performer can therefore write their own software to capture

and parse the real-time data from whatever sensor(s) they might be using and pipe this

data into EyesWeb via OSC. Alternatively, a performer could directly implement the

sensor interface as an additional EyesWeb block.

Figure 3.6: An illustration of the middleware architecture of a gesture recognition
system for MCI. Sensor data can be piped into the system via communication protocols
such as OSC, the system can then output the corresponding classification predications

via OSC for use in controlling the user’s custom audio software.

3.3.5 Creating a Robust Recognition System

A robust recognition system commonly requires an appropriate pre-processing or fea-

ture extraction stage prior to any classification by a trained machine learning algorithm,

with the predicted classification label being post-processed prior to being acted upon.

A user may therefore want to experiment with various feature extraction algorithms or

post-processing functions as well as testing which machine learning algorithm works best

for the recognition of their gestures. It is for this reason that each feature extraction al-

gorithm or machine learning algorithm has been encapsulated as an individual EyesWeb

block as this enables the user to connect the blocks together to create the recognition

system the user thinks maybe most appropriate for solving their recognition problem.

One of the major advantages of using a patch-based GUI program such as EyesWeb

is that multiple recognition algorithms can be used in parallel, with the output of one

classifier providing contextual information for another classification chain. For example

Chapter 3. Gesture Recognition Systems for Musician Computer Interaction 48

the predicted event of one classifier could be used to permit/deny the output of a second

classifier being acted upon.

3.3.6 Training a Machine Learning Algorithm

Prior to using any machine learning algorithm it must first be trained. The SEC features

a number of useful tools to facilitate a user to efficiently create a training set and then

quickly train a machine learning algorithm. Each algorithm, for example, will commonly

have a dedicated block for recording training data, a second block for training the

algorithm and a third block for the real-time classification of any new data using the

trained model. This three block design enables the user to create a specific ‘training

patch’ for recording and training the algorithm and a separate ‘prediction patch’ for real-

time classification that may also contain other trained machine learning algorithms, post-

processing algorithms and network connections to communicate with other audio/visual

software.

Figure 3.7: A training patch for the ND-DTW algorithm.

The training patch, illustrated in Figure 3.7, will have the identical sensor input and

feature extraction methods as the prediction patch, see Figure 3.8, but can also contain

a number of helpful features that assist the user in collecting and labeling the training

data. This could consist of timer functions, for example, that enable the user to press

a key to prepare the system to record a two-handed gesture. After a predefined delay

the user can then start to perform the gesture while the system records the training

data, automatically labeling each training sample with the ID value of that gesture.

After a further predefined delay the system stops recording the gesture and the user can

either record another example of the same gesture or move onto the next gesture in their

Chapter 3. Gesture Recognition Systems for Musician Computer Interaction 49

vocabulary. When the user has created a number of training examples for each gesture

they can save the training data to a file and then use this to train the machine learning

algorithm. Each algorithm will then save its trained model to a file to enable it to be

loaded by the real-time classification block.

Figure 3.8: A prediction patch for the ND-DTW algorithm.

The user can select whether they wish to train the algorithm using an automatic vali-

dation method, such as K-fold cross-validation, to estimate the generalisation ability of

the trained model or to decide whether they want to devote all of the available data to

training the model and instead test the algorithm ‘online’ using the prediction patch.

Either way, if a poor model has been created the user can quickly reload the original

training data in the training patch and modify some of the parameters of the machine

learning algorithm or even change the feature extraction method and quickly retrain a

new model with the updated settings. Alternatively, the performer could use the one

training set to train and validate several algorithms each with different settings all at the

same time to determine the best features/algorithm/parameters to use. The performer

then simply needs to load the best model into the predication patch. These examples

illustrate the advantages of using three separate blocks to create a training set, actually

train a model and finally perform real-time prediction on new data using the trained

model.

3.4 Summary

This chapter has established the theoretical foundations on which the remainder of the

thesis is based. It first described the area of research defined as musician-computer

Chapter 3. Gesture Recognition Systems for Musician Computer Interaction 50

interaction. This was followed by a discussion of why gestural interaction is a useful

control method for a performer along with why a musician may want to adopt a ma-

chine learning approach in order to teach a machine to recognise their gestures. The

common design, development, training and evaluation strategies for gesture recognition

systems were then reviewed and the strategies of such systems for HCI and MCI were

differentiated. The chapter was concluded by presenting the SEC, a machine learning

toolbox that has been specifically designed for MCI. The following chapter presents an

algorithm that has been specifically developed, using the design criteria outlined in this

chapter, for the recognition of semiotic musical gestures.

Chapter 4

Recognition of Static Semiotic

Musical Gestures

Do not worry about your difficulties in Mathematics.

I can an assure you mine are still greater.

Albert Einstein

This chapter presents a novel algorithm called the Adaptive Näıve Bayes Classifier

(ANBC) that has been specifically designed for the recognition of static semiotic musical

gestures. The chapter describes how the ANBC algorithm can automatically adapt itself

to accommodate a performer as they adapt their own gestures over, for example, the

course of a rehearsal period. The chapter concludes with an experiment designed to

evaluate the adaptive classification abilities of the new algorithm.

4.1 Semiotic Gestures

Semiotic gestures are body movements intended to communicate meaningful informa-

tion. Rime and Schiaratura Rimé and Schiaratura (1991) segmented semiotic gestures

into four categories:

1. Symbolic: These are gestures that, within each culture, have come to have a

single meaning. For example, the “OK” hand gesture or the gestures that make

up the American Sign Language.

2. Deictic: These are the types of gestures most generally seen throughout HCI and

consist of pointing gestures or gestures otherwise directing the listeners attention

51

Chapter 4. Recognition of Static Semiotic Musical Gestures 52

to specific events or objects in the environment. For example a pointing gesture

such as, ‘put that there’.

3. Iconic: These gestures are used to convey information about the size, shape or

orientation of the object of discourse. For example the hand gesture that accom-

panies the phrase, ‘the fish was this big’.

4. Pantomimic: These gestures typically mimic an action using some invisible tool

or object in the speaker’s hand. For example, when a speaker says “I turned the

steering wheel hard to the left”, while at the same time performs the action of

turning an imaginary wheel with both hands.

This chapter focuses on the recognition of those semiotic gestures that consist of a key

static posture, as opposed to temporal gestures that consist of a cohesive sequence of

movements that occur over a variable time period. Some static semiotic gestures may

also contain a preparation phase in which the performer needs to move, for example, their

arms into the ‘the fish was this big’ posture. However, the key phase of the gesture is the

final static posture (indicating that indeed the fish was huge) and it is this phase that

any classification algorithm needs to recognise. An easy way to differentiate whether

a semiotic gesture is a static posture or temporal gesture is if it can be explained to

someone with just one image, in the case of a static posture, or if several images need

to be used to fully understand the gesture.

4.1.1 Semiotic Musical Gestures

Semiotic gestures, both static postures and temporal gestures, are frequently used

throughout many genres in music to enable performers to communicate and cue other

performers live on stage. This could consist of subtle looks between players in a trio

or more obvious commands of a conductor in front of a choir. The performance artist

Lawernce D. ‘Butch’ Morris (see Figure 4.1), for example, uses a number of semiotic ges-

tures in conduction, an improvisation conducting style that he has refined over 20 years,

during 150 performances in 23 countries. Using conduction, Morris directs and conducts

an improvising ensemble using over 20 hand and baton gestures. Morris can shape in

real time nearly every aspect of a performance. This includes controlling changes in

tempo, key and pitch; instructing performers to improvise freely or on a certain melody;

repeating a passage as an ostinato or riff and instructing the musicians to remember a

melody that can be used later as a motif. The automated recognition of semiotic ges-

tures by a machine would enable a performer to interact with a computer in the same

manner that Morris interacts with his ensemble.

Chapter 4. Recognition of Static Semiotic Musical Gestures 53

Figure 4.1: The performance artist ‘Butch’ Morris who regularly uses a number of
semiotic gestures in conduction, an improvisation conducting style that he has refined

over 20 years, to communicate with other musicians in a live performance.

4.2 Designing A Classifier For Semiotic Musical Gestures

Given the frequent occurrence of semiotic gestures within a musical performance and

their power in facilitating performer-performer communication, a classifier was designed

that could robustly recognise semiotic musical gestures, with the focus of the algorithm

to recognise static postures as opposed to semiotic gestures that evolve over time (the

recognition of temporal gestures will be addressed in the next chapter). Using the design

criteria proposed in section 3.2, a number of design constraints for a semiotic gesture

classification algorithm were established:

1. It should be a general purpose, N -dimensional classifier - in other words it should

not be designed for one specific sensor or data type but work with anyN -dimensional

feature vector.

2. It should be able to be trained quickly with a low number of training examples for

each gesture in the model.

3. It should automatically calculate a classification threshold for each gesture in the

model so that a null-model is not required for real-time continuous recognition.

One additional design constraint was added for the recognition of static semiotic musical

gestures. This was that the algorithm, once trained, should be able to automatically

adapt itself to provide the user with the best classification results if the user adapts their

Chapter 4. Recognition of Static Semiotic Musical Gestures 54

own movements. This is particularly useful for a musician as they might define a set of

gestures to use at the start of a rehearsal session and then over the course of the rehearsal

period slightly modify and refine these gestures. If this was to occur, the user should not

have to then retrain the system every 10 minutes to accommodate these small changes

in their movements. Alternatively, the algorithm should instead automatically refine its

own model to provide the best recognition results for the user. The user can then turn-

off this adaptive element of the algorithm when they feel that they are happy with their

own gestures along with the classification performance of the algorithm. There are only

a small number of examples of machine learning algorithms that are suitable for gesture

recognition and can automatically adapt their own models online, such as the work

by Licsar and Sziranyi (2005) who developed a vision-based hand gesture recognition

system with interactive training aimed to achieve a user-independant application by on-

line supervised training. Babu et al. (2010) also created an online adaptive radial basis

function neural network for robust object tracking. However, both these algorithms did

not fulfill the design constraints for a semiotic musical gesture classification algorithm, as

the algorithm was either restricted to use just a video camera as input to the recognition

system or a large number of training examples were required because of the complexity

of the model being used. A novel algorithm was therefore developed specifically for the

recognition of semiotic musical gestures. The algorithm is called the Adaptive Näıve

Bayes Classifier (ANBC), and will now be presented in detail.

4.3 Adaptive Näıve Bayes Classifier

The Adaptive Näıve Bayes Classifier (ANBC) is a supervised machine learning algo-

rithm based on a simple probabilistic classifier called Näıve Bayes that itself is based

on Bayes’ theory and is particularly apt for the classification of static symbolic musical

gestures. Like a Näıve Bayes Classifier, ANBC makes a number of basic assumptions

about the data it is attempting to classify, most significantly that all the variables in

the data are independent. However, despite these näıve assumptions, Näıve Bayes Clas-

sifiers have proved successful in many real-world classification problems (e.g., Domingos

and Pazzani, 1997, Sebe et al., 2002, Li and Anderson-Sprecher, 2006, Lu et al., 2010,

Duda et al., 2001). Rish, 2001 has also shown in an empirical study that the Näıve

Bayes Classifier not only performs well with completely independent features, but also

with functionally dependent features, which is surprising given the algorithm’s näıve as-

sumptions. One major advantage of the ANBC algorithm for the recognition of musical

gestures is that it requires a small amount of training data to estimate the parameters of

each model. This is mainly due to the näıve assumption that each variable in the data is

independent, as the parameters for each dimension can be computed independently and

Chapter 4. Recognition of Static Semiotic Musical Gestures 55

it therefore does not suffer from the ‘curse of dimensionality’ (Bishop, 2006). The Näıve

Bayes Classifier has been specifically updated with an adaptive online training function

along with the automatic computation of a classification threshold for each gesture in

the model. Prior to explaining the adaptive element of the algorithm, its foundations

will first be described.

4.3.1 Bayes’ Theory

The Adaptive Näıve Bayes Classifier is based on Bayes’ theory:

P (A|B) =
P (B|A)P (A)

P (B)
(4.3.1)

which gives the likelihood of event A occurring given the observation of event B. Here

P (A) represents the prior probability of event A occurring and P (B) is a normalising

factor to ensure that all the posterior probabilities sum to 1.

Using Bayes’ theorem, the Näıve Bayes Classifier predicts the likelihood of gesture gk
occurring given the observation of sensor value x:

P (gk|x) =
P (x|gk)P (gk)∑ G
i=1 P (x|gi)P (gi)

(4.3.2)

Note that P (B), the normalising factor, has now become the summation of the likelihood

of all the G gestures in the model occurring given the observation of sensor value x. In

most real-world applications, P (gk), the prior probability of observing gesture k, will be

equally likely for all the gestures and given by 1/G (in which case it could simply be

ignored).

Because a Näıve Bayes Classifier makes the näıve assumption that each dimension of

data is independent, equation (4.3.2) can easily be extended to calculate the posterior

probability of gesture gk occuring given the observation of the N -dimensional vector x:

P (gk|x) =
P (x|gk)P (gk)∑G
i=1 P (x|gi)P (gi)

(4.3.3)

where x = {x1, x2, . . . , xN}. As each dimension is assumed to be independent, P (x|gk)P (gk),

becomes:

P (x|gk)P (gk) =
N∏
n=1

P (xn|gk)P (gk) (4.3.4)

Chapter 4. Recognition of Static Semiotic Musical Gestures 56

4.3.2 The Gaussian Density Function

The structure of a Näıve Bayes classifier is determined by the conditional densities

P (x|gk) along with the prior probabilities P (gk). For the classification of static musical

gestures, the multivariate Gaussian density is a suitable density function to use, partic-

ularly in the instance where the feature vector x for a given gesture gk is a continuous-

valued, randomly corrupted version of a single prototype vector µk (Duda et al., 2001).

This is commonly the case for a static symbolic musical gesture, which will feature a

specific body pose that will be slightly corrupted by both human and sensor variabil-

ity, hence why the Gaussian is a good model for the actual probability distribution.

Other density functions such as the Radial Basis Function, Cauchy distribution (e.g.,

Sebe et al., 2002) or Dirichlet distribution (e.g., Wong and Chang, 2011) would also be

suitable.

The univariate Gaussian density function, also commonly referred to as the normal

distribution, is specified by two parameters, its mean µ and its variance σ2:

N (x|µ, σ2) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
(4.3.5)

The multivariate Gaussian density function in N dimensions is given as:

N (x|µ,Σ) =
1

(2π)N/2|Σ|1/2
exp

(
−1

2
(x− µ)ᵀΣ−1(x− µ)

)
(4.3.6)

where x is an N -dimensional column vector, µ is an N -dimensional mean vector, Σ is a

N -by-N covariance matrix, and |Σ| and Σ−1 are its determinant and inverse respectively.

Figure 4.2 shows the effect of modifing the µ and σ parameters for two, one-dimensional

Gaussian distributions along with illustrating the distribution of a Gaussian in two-

dimensional space.

(a) Two one-dimensional Gaussian distributions (b) A two-dimensional Gaussian distribution

Figure 4.2: (a) Two one-dimensional Gaussian distribution with µ1 = −0.5, µ2 = 0.4
and σ1 = 0.4, σ2 = 0.5. (b) A two-dimensional Gaussian distribution with µ = (0.0,

0.0) and Σ = (1.0, 0.0; 0.0, 1.0).

Chapter 4. Recognition of Static Semiotic Musical Gestures 57

Using the multivariate Gaussian, P (x|gk) can be replaced by:

P (x|gk) ∼ N (x|µk,Σk) (4.3.7)

Instead of having to compute the determinant and inverse for each Σk, the multivariate

Gaussian density function can be calculated by taking the product of N independent

univariate Gaussian distributions, each with their own mean and variance values:

P (x|gk) ∼ N (x|µk,σ2
k) =

N∏
n=1

1
σn

√
2π

exp
(
−(xn − µn)2

2σ2
n

)
(4.3.8)

4.3.3 Adding a Weighting Coefficient For An N-Dimensional Model

For the recognition of musical gestures, it is beneficial to add an additional weighting

coefficient (φkn) for the nth dimension of the kth gesture. This weighting coefficient adds

an important feature for the Adaptive Näıve Bayes Classifier as it enables one general

classifier to be trained with a high number of multi-dimensional signals, even if a number

of signals are only relevant for one particular gesture. This would enable one general

classifier to recognise, for example, both left and right hand gestures independently,

without the position of the left hand affecting the classification of a right handed gesture

for instance. By setting the left handed sensor dimensions weighting coefficients to 0 for

any right handed gesture and the right handed sensor dimension’s weighting coefficients

to 1, any left handed movements will be ignored for a right handed gesture. The opposite

weighting coefficient values could also be set for any left handed gesture, or for a gesture

that required both hands, all the weighting coefficients could be set to 1. This simple

addition of a weighting coefficient enables one general classifier to be trained for left

handed gestures, right handed gestures and two handed gestures, rather than creating

and training three individual classifiers. This weighting coefficient can either be set

manually by the user or could even be set by computing the overall significance of each

dimension for each particular gesture. A Gaussian model (Φ) for the kth gesture can

therefore be represented by:

Φk = {µk,Σk, φk} (4.3.9)

Equation (4.3.8) can therefore be updated with a weighting coefficient to give:

P (x|gk) ∼ N (x|Φk) =
N∏
n=1

if φn > 0, 1
σn

√
2π

exp
(
− (xn−µn)2

2σ2
n

)
φn

otherwise, 1
(4.3.10)

Chapter 4. Recognition of Static Semiotic Musical Gestures 58

To stop a weighting coefficient value of 0 setting the product over all dimensions to 0,

regardless of the other values or weights, the current product will only be multiplied by

the nth dimensional Gaussian value if the nth dimensional weight coefficient is greater

than 0. If the nth dimensional weighting coefficient is equal to 0 then that dimension

should be ignored and therefore 1.0 is used instead. Figure 4.3 illustrates two, two-

dimensional weighted Gaussians.

Figure 4.3: Two two-dimensional weighted Gaussian distributions with:
µ1[−1− 1], µ2[1 1], σ1[1.2 0.8] σ2[0.8 1.4] and φ1[1 1], φ2[1 1].

4.3.4 Real-World Computational Concerns

As the product of a large number of small probabilities can easily underflow the numer-

ically precision of a computer, it is more practical to take the sum of the log of each

weighted Gaussian rather than the product:

ln N (x|Φk) =
N∑
n=1

ln

if φn > 0, 1
σn

√
2π

exp
(
− (xn−µn)2

2σ2
n

)
φn

otherwise, 1
(4.3.11)

Computing the log of the function not only stops numerically underflow, it also sim-

plifies the subsequent mathematical analysis. Because the logarithm is a monotonically

increasing function of its argument, maximization of the log function is equivalent to

maximization of the function itself (Bishop, 2006). Like the case in equation (4.3.10),

the log of the weighted Gaussian is only taken if the nth dimensional weighting coeffi-

cient is greater than 0, otherwise the log of 1 is used instead which gives 0 and therefore

achieves the desired result. Figure 4.4 illustrates the log probability surface for the two

weighted Gaussians that were shown in Figure 4.3.

Chapter 4. Recognition of Static Semiotic Musical Gestures 59

(a) The log probability surface for the first weighted
Gaussian

(b) The log probability surface for the second weighted
Gaussian

Figure 4.4: The log probability surfaces for each of the 2-dimensional weighted Gaus-
sians.

4.3.5 Training The Gaussian Model

Using a Gaussian function, the Adaptive Näıve Bayes Classifier requires G(3N) pa-

rameters, assuming that the each of the G-gestures require specific values for the N -

dimensional µk, σk and φk vectors. Assuming that φk is set manually by the user, the

µk, σk values can easily be calculated in a supervised learning scenario by grouping the

input training data X, a matrix containing M training examples each with N dimen-

sions, into their corresponding classes. The values for µ and σ of each dimension (n)

for each class (k) can then be estimated by computing the mean and variance of the

grouped training data for each of the respective classes.

µkn =
1
Mk

M∑
i=1

1 {Xin} 1 ≤ k ≤ G, 1 ≤ n ≤ N (4.3.12)

σkn =

√√√√ 1
Mk − 1

M∑
i=1

1
{

(Xin − µkn)2
}

1 ≤ k ≤ G, 1 ≤ n ≤ N (4.3.13)

where Mk is the number of training examples in the kth class and 1{·} is the indicator

bracket that gives 1 when the training label of example i equals g and 0 otherwise.

4.3.6 Preventing Over-Fitting

Although the Gaussian distribution is a suitable function to use when the number of

training examples is small compared with more complex distributions with a high number

of parameters, it is still prone to the problem of bias. In particular, it can be shown that

the maximum likelihood solution given by taking the sample mean and sample variance

will commonly underestimate the true variance of a distribution (Bishop, 2006). This is

a key example of over-fitting when a limited number of training examples are presented

to the learning algorithm. The bias of the maximum likelihood solution will, however,

Chapter 4. Recognition of Static Semiotic Musical Gestures 60

become significantly less as the number of Mk training points increases, and in the limit

Mk → ∞ the maximum likelihood solution for the variance equals the true variance of

the distribution that generated it. A performer should therefore ensure that they do not

attempt to train the ANBC algorithm with a very limited number of training examples

as this would cause the algorithm to severely over fit its model. This should not be a

major issue for a performer however as, because the algorithm has been designed for the

recognition of static postures, the musician only needs to record a few seconds of them

performing each posture to collect the training examples for each gesture. If the sensor

they are using was sampled at 100Hz for example, five seconds of training would still

create five hundred training examples per gesture and thus this should help lower the

possibility of the model from severe over-fitting.

4.3.7 Classification Using The Gaussian Model

After the Gaussian models have been trained for each of the G classes, an unknown

N -dimensional vector x can be classified as one of the G classes using the maximum a

posterior probability estimate (MAP). The MAP estimate classifies x as the kth class

that results in the maximum a posterior probability given by:

arg max
k

P (gk|x) =
P (x|gk)P (gk)∑G
i=1 P (x|gi)P (gi)

1 ≤ k ≤ G (4.3.14)

As the denominator in equation (4.3.14) is common across all gestures it can therefore

be ignored without effecting the results. If P (gk) is a constant scalar that is equal across

all of the G gestures then it can also be ignored, leaving the maximum likelihood which,

when using the logarithm of the weighted Gaussian model, is equivalent to:

arg max
k

ln N (x|Φk) 1 ≤ k ≤ G (4.3.15)

Using equation (4.3.15), an unknown N -dimensional vector x can be classified as one

of the G classes from a trained ANBC model. If x actually comes from an unknown

distribution that has not been modeled by one of the trained classes (i.e. if it is not any

of the gestures in the model) then, unfortunately, it will be incorrectly classified against

the kth gesture that gives the maximum log-likelihood value. A rejection threshold, τk,

must therefore be calculated for each of the G gestures to enable the algorithm to classify

any of the G gestures from a continuous stream of data that also contains non-gestural

data.

Chapter 4. Recognition of Static Semiotic Musical Gestures 61

4.3.8 Computing a Suitable Confidence Measure For Real-Time Recog-

nition

For the rejection threshold, we desire a value that indicates how confident the classifier

is in predicting that x actually came from the kth distribution. In some applications it

would be possible to use the normalised value resulting from Bayes’ theorem and clas-

sify x as class k if its prediction value was above some pre-defined value, such as 0.5.

Unfortunately though, this approach will not work for the classification of a semiotic

gesture in a continuous stream of data which may also contain segments of non-gestural

data. Bayes’ theorem cannot be used in this instance because, as P (B|A)P (A) is nor-

malised by P (B), a poor prediction value when normalised may unfortunately yield a

very confident prediction value, resulting in a false-positive classification error if x is not

a gesture.

This error can easily be mitigated however by using the log-likelihood value of the kth

predicted gesture as a measure of how confident the algorithm is that x is in fact gesture

k. Using the log of the weighted Gaussian function as a confidence measure, a suitable

rejection threshold can therefore be computed during the algorithms training phase

to enable the rejection of non-gestural data in the real-time classification phase. The

rejection threshold, τk, can be computed for each of the G gestures by taking the average

confidence level of all the training data for class k minus γ standard deviations:

τk = µ∗k −
(
σ∗kγ

)
(4.3.16)

where µ∗k and σ∗k are the average confidence values and standard deviation of the confi-

dence levels respectively for the kth gesture given by:

µ∗k =
1
Mk

M∑
i=1

1 {ln N (Xi|Φk)} (4.3.17)

σ∗k =

√√√√ 1
Mk − 1

M∑
i=1

1
{(

ln N (Xi|Φk)− µ∗k
)2} (4.3.18)

Here γ is a constant scalar value that can be adjusted by the user until a suitable level

of classification has been achieved. The γ parameter enables the performer to further

mitigate the effects of over-fitting, as by setting γ to a value greater than 1.0 will lower

the threshold value and enable ‘noisier’ data than that in the training data set to be

classified as gesture k. Using the rejection threshold, a gesture will only be classified as

k if its log-likelihood estimation is greater than or equal to that classes’ threshold value.

Otherwise, x will be classified as a null gesture, usually with an I.D. value of 0:

Chapter 4. Recognition of Static Semiotic Musical Gestures 62

k̂ =

k if(ln N (x|Φk) ≥ τk)

0 otherwise
(4.3.19)

4.3.9 Computing a Rejection Threshold

Using the log of the weighted Gaussian function as a confidence measure, a suitable

threshold value, τk, can be computed by taking the average confidence level of all the

training data for class k minus γ standard deviations:

τk = µ∗k −
(
σ∗kγ

)
(4.3.20)

where µ∗k and σ∗k are the average confidence values and standard deviation of the confi-

dence levels respectively for the kth gesture given by:

µ∗k =
1
Mk

M∑
i=1

1 {ln N (Xi|Φk)} (4.3.21)

σ∗k =

√√√√ 1
Mk − 1

M∑
i=1

1
{(

ln N (Xi|Φk)− µ∗k
)2} (4.3.22)

Here γ is a constant scalar value that can be adjusted by the user until a suitable level

of classification has been achieved. The γ parameter enables the performer to further

mitigate the effects of over-fitting, as by setting γ to a value greater than 1.0 will lower

the threshold value and enable ‘noisier’ data than that in the training data set to be

classified as gesture k.

Using the rejection threshold, a gesture will only be classified as k if its likelihood

estimation is greater than or equal to that classes’ threshold value. Otherwise, x will be

classified as a null gesture, usually with an I.D. value of 0.

k̂ =

k if(ln N (x|Φk) ≥ τk)

0 otherwise
(4.3.23)

4.3.10 Adaptive Online Training

One key element of the Näıve Bayes Classifier, is that it can easily be made adaptive.

Adding an adaptive online training phase to the common two-phase (training and pre-

diction) ethos provides some significant advantages for the recognition of static musical

Chapter 4. Recognition of Static Semiotic Musical Gestures 63

gestures. During the adaptive online training phase the algorithm will not only perform

real-time predictions on the continuous stream of input data; it will also continue to

train and refine the models for each gesture. This enables the performer to initially

train the algorithm with a low number of training examples after which, during the

adaptive online training phase, the algorithm can continue to train and refine the initial

models, creating a more robust model as the number of training examples is increased.

The adaptive online training phase also importantly facilitates the algorithm to adapt

its initial model as the performer themselves adapts and refines their own gestures as

may happen over the course of a rehearsal period for example.

For the Adaptive Näıve Bayes Classifer, the adaptive online training works as follows:

After the musician has initially trained the algorithm, they can use it in real-time to

classify their musical gestures. During this real-time prediction, the musician can choose

to turn on the adaptive online training mode. In this mode the algorithm will slowly

refine µk,σk and τk for each of the G gestures, overwriting the previous models that

have been computed earlier. For the adaptive online training phase, the user must first

decide on three parameters, the maximum training buffer size, the update rate and γ the

scalar on the number of standard deviations (see equation (4.3.20)). These parameters

control the maximum number of training examples to save for each class in the model,

how fast the algorithm retrains the model and the number of standard deviations to use

when calculating the classification threshold in the model respectively.

If x is correctly classified as gk and is greater than or equal to τk then:

• Add x to the training buffer, removing the oldest training example if the buffer is

full and increment the update counter by 1.

• If the update counter is equal to the update rate then recompute µk,σk and τk

using the data in the training buffer. These are calculated using equations (4.3.12),

(4.3.13), (4.3.21) and (4.3.22). Reset the update counter to 0.

Using a limited size first-in, first-out (FIFO) buffer, set by the maximum training buffer

size parameter, ensures that only the most recent training examples are used to refine

the model, allowing the µ and σ vectors to slowly change as the user refines their own

movements. Setting a fixed buffer size also ensures that an unfeasible amount of memory

is not consumed by thousands of training examples over the course of a long rehearsal

session. An individual FIFO buffer must be used for each of the G gestures to ensure

that a large amount of new training data for one class does not ‘pop-out’ the original

training data in any of the other classes. The speed at which the algorithm adapts

can be controlled by the update rate parameter, allowing the performer to control how

Chapter 4. Recognition of Static Semiotic Musical Gestures 64

sensitive the adaptive component of the algorithm will be to their latest gestures. The

overall sensitivity of the system, both for the adaptive online training phase and for the

standard real-time prediction can be controlled by the performer using the γ parameter.

4.3.11 Strengths and weaknesses of the ANBC algorithm

The greatest strength of the Adaptive Näıve Bayes Classifier is also, perhaps, its greatest

weakness. This is the algorithm’s ability to automatically adapt its model by adding

the latest classified input vector to the data that will then be used to recompute model.

In the best case this self-labelled data will help to create a more robust model, however,

in the worst case a small number of incorrectly labelled training examples could create

a ‘run-away’ model that becomes less effective at each update step. To mitigate this

problem a parameter was added to the EyesWeb implementation of the algorithm that

enables the user to reload the original ANBC model if the real-time classification abilities

of an updated model starts to perform poorly. The user can also ensure that they have

set the buffer size, update rate and γ parameters to the most appropriate values.

The exact value of these parameters will vary depending on the sensors and features

being input to the algorithm and on the types of gestures the user wishes to classify,

however, the following general rules can be applied. The buffer size should be set to a

value that maximizes the amount of correctly labelled training data for each class, while

minimizing the number of ‘old’ training examples that are no longer relevant because

the user has modifier their original gesture. If the training buffer size is set to a value

that is too large then the model may start to under-fit, resulting in an increasing number

of false-positive classifications. If the training buffer size is set to a value that is too

small then the model may over-fit, resulting in a poor estimation of the model’s variance

parameters which may cause a gesture to be incorrectly classified as a null-gesture.

The most appropriate value for the update rate parameter will depend on the sampling

frequency of the data that is input to the algorithm along with the speed at how fast

the performer thinks their gestures could change. The user should choose an update

rate value that enables the algorithm to slowly recompute the ANBC model so that the

parameter values are not rapidly changing every second. The update rate parameter

should however be fast enough so that no training data is being wasted, i.e. old training

data is being removed from the FIFO buffer before the data was every used to recompute

a new ANBC model. Finally, the user should set the γ parameter to an appropriate

value that achieves the user’s desired level of classification robustness. Setting the γ

parameter to a low value will reduce the possibility of the algorithm making a false-

postive classification error, however, a low γ value may also result in the algorithm not

being able to classify an actual gesture if the data is slightly ‘noisier’ than that of the

Chapter 4. Recognition of Static Semiotic Musical Gestures 65

training data. A high γ parameter will enable ‘noisy’ gestures to be correctly classified,

however, setting this parameter too high may result in false-positive classification errors.

Through the real-time application of using the ANBC algorithm to classify static semi-

otic gestures, it became quickly evident that one of the algorithms key strengths is the

its ability to automatically compute τk, the classification threshold for the gth gesture.

This classification threshold enables the ANBC algorithm to classify the musical ges-

tures from a continuous stream of data that also contains null gestures without having

to explicitly train a null-class or tell the algorithm that one of the gestures has just been

performed.

One possible weakness of using the Gaussian distribution as the foundations of the

ANBC algorithm is that the Gaussian model can only be used for the classification of

linearly separable data. The ANBC algorithm could possibly be improved in the future

by implementing functions that can be used for the classification of non-linear data by

using, for example, the kernel trick (which will be described further in chapter 6.1.2) to

map the non-linear problem in the original data space to a linearly separable problem

in a higher dimensional feature space (Bishop, 2006).

4.4 Implementation of the ANBC algorithm in EyesWeb

To enable the Adaptive Näıve Bayes Classifier algorithm to be used by any performer,

regardless of their programming abilities or prior understanding of machine learning,

the algorithm has been fully implemented within EyesWeb. The ANBC algorithm can

be found in the SARC gesture recognition catalog, and consists of three separate blocks:

the ANBC Training Tool block, the ANBC Training block and the ANBC Prediction

block.

4.4.1 The ANBC Training Tool block

The ANBC Training Tool block enables a performer to quickly collect the labelled train-

ing data required to train the ANBC algorithm. The block allows the performer to use

any N -dimensional feature vector as input to the ANBC algorithm, giving the user the

option to manually assign a weighting coefficient value for each of the N dimensions.

The user can then perform a number of repetitions of each of the G gestures they wish

the algorithm to recognise, setting the block to record the input feature vector as the

user performs each gesture. The user can then save all of the labelled training data to

a file when they are satisfied that enough training data has been recorded.

Chapter 4. Recognition of Static Semiotic Musical Gestures 66

The ANBC Training Tool block features two inputs, both of which are [1 by N] dou-

ble matrices, the first for the N -dimensional feature vector and the second for the N -

dimensional weights vector. To provide the user with feedback on the current status of

the block, it features two outputs. The first output is a boolean datatype that provides

the current recording status of the block, i.e. it will output true if the block is recording

the current input data. The second output of the block is an integer value representing

the current number of training examples that have been recorded in the blocks internal

buffer. The block also features five parameter pins for setting the class label value for the

corresponding current input, e.g. labeling a few seconds of recorded data as belonging

to class 1, along with buttons to set the blocks recording status to true or false, save

the current training data to a file or to clear all of the currently collected training data.

The final parameter pin enables the user to set the name and location of the file that

the training data will be saved to.

Figure 4.5 shows an example patch that has been created to demonstrate to a novice user

how to operate the ANBC Training Tool block. In this example the input to the block

consists of the x and y coordinates of a mouse, with both values having equal weighting

coefficients of 1. If the user wanted to record some training data using their own specific

sensor device then they would simply have to replace the current two-dimensional input

vector, containing the x and y values of the mouse, with an N -dimensional feature vector

containing the raw values or features from their own sensor device(s). After the user

has updated the weights vector to also have N input values they can then run the patch

and start to record a number of training examples for each of the G classes that they

wish the ANBC algorithm to recognise.

4.4.2 The ANBC Train block

The ANBC Train block enables a performer to quickly train an ANBC model, using

the training data collected using the ANBC Training Tool block. The ANBC Train

block loads the labelled training data from the file created by the ANBC Training Tool

block and attempts to train an ANBC model. If successful, the ANBC block will output

‘true’ on its first output pin along with saving the trained ANBC model to a file. If

unsuccessful, the block will output ‘false’ and print an error message informing the user

of what the error may have been. Figure 4.6 shows an example patch that has been

created to demonstrate to a novice user how to operate the ANBC Train block.

The ANBC Train block features no input pins and two output pins showing the training

status of the block and the results of the cross validation testing, if the user enables

the cross validation training. The block also features six parameter pins consisting of a

Chapter 4. Recognition of Static Semiotic Musical Gestures 67

Figure 4.5: An example patch demonstrating the use of the ANBC Training Tool
block. The input to the block consists of the x and y coordinates of the mouse, with

both inputs having the equal weighting values of 1.

button that loads the training data from a file and starts the ANBC training algorithm

and a pin enabling the user to set the γ parameter. One boolean parameter pin controls

if cross validation is used to test the model and an integer parameter pin enables the

user to set the number of folds to be used. The remaining two pins allow the user to

specify the name and location of the file containing the training data and the file to

which the ANBC model will be saved after the model has been trained. Figure 4.6

shows an example patch that has been created to demonstrate to a novice user how to

operate the ANBC Train block.

4.4.3 The ANBC Predict block

The ANBC Predict block enables a performer to use the ANBC algorithm to classify

the performer’s gestures from a continuous stream of data that may also contain null

gestures. The input to the block should consist of the same N -dimensional feature vector

setup that was used for input to the ANBC Training Tool block. The ANBC block will

classify each new N -dimensional input, outputting the predicted classes’ ID if the input

is classified as one of the G classes in the ANBC’s trained model, otherwise outputting 0.

The block also features five other output pins, containing the maximum log-likelihood

Chapter 4. Recognition of Static Semiotic Musical Gestures 68

Figure 4.6: An example patch demonstrating the use of the ANBC Train block.

value of the current prediction, a G-dimensional vector containing the log-likelihood

value for all of the G classes in the trained model and three double matrices containing

the current model’s parameter values for µ, σ and τ .

In addition to the input and output pins, the ANBC Predict block also features eight

parameter pins. These pins consist of two file name parameters enabling the user to

specify the name and location of the model file created by the ANBC Train block and

the original training data used to train the model created by the ANBC Training Tool

block. The remaining parameter pins are all used in the adaptive online training phase of

the algorithm. These pins consist of three buttons to turn on/off the adaptive training,

a button to reload the original training data and a button to overwrite the original

ANBC model file with the latest updated model. The final three parameter pins control

the algorithm’s maximum buffer size, the update rate and the γ parameter. Figure 4.6

shows an example patch that has been created to demonstrate to a novice user how to

operate the ANBC Predict block.

4.4.4 Summary of the ANBC block design

Encapsulating the ANBC algorithm’s training and prediction functions across the three

ANBC blocks enables a performer to efficiently record and label some training data,

Chapter 4. Recognition of Static Semiotic Musical Gestures 69

train an ANBC model and finally use the algorithm in real-time to predict and refine

the underlying model using the adaptive training function. Saving the original training

data to its own file, separated from the ANBC model parameter file, enables the user

to train multiple ANBC models, each with a different γ parameter for example, and

quickly evaluate the classification abilities of each model using cross validation or real-

time classification without having to collect the training data multiple times. Saving the

training data to its own file also enables the ANBC Predict block to load this data and

use it to populate the FIFO buffer, thus enabling any new training data to be combined

with the original data that was used to first train the model. If the performer feels that

the adaptive online training function has created a very robust model they can turn

off the adaptive training to fix the model’s parameters at their current values and also

set the ANBC Predict block to overwrite the initial model and training data contained

in the files with the current model and the latest training data contained in the FIFO

buffer. Alternatively, if the performer thinks that the algorithm’s classification abilities

have started to degrade because of a run-away self-labelling problem, the user can simply

reload the original model, reverting the ANBC model and the training data in the FIFO

buffer back to their original conditions.

Figure 4.7: An example patch demonstrating the use of the ANBC Predict block.

Chapter 4. Recognition of Static Semiotic Musical Gestures 70

4.5 Evaluating the ANBC Algorithm

The adaptive classification abilities of the Adaptive Näıve Bayes Classifier algorithm

were tested using a simple ‘free-space’ pointing based experimental task. Participants

were asked to define a number of target areas within a fixed region of space that they

then had to return to when prompted. The ANBC algorithm was then used to classify

if the participant’s hands were in the correct area of space when prompted; and if the

classification results would improve when the adaptive function of the algorithm was

used. To constrain this task as much as possible a rudimentary game orientated task

was used instead of a musical orientated task. To achieve this we created a virtual

boxing game called ‘Air Makoto’ in which participants were asked to strike a number of

virtual targets when prompted. The ANBC algorithm, combined with a punch detection

algorithm, were used to recognise if the participant was able to successfully hit the correct

virtual target within a limited time scale.

4.5.1 Air Makoto

Air Makoto is a virtual boxing game loosely based on the martial arts training game

Makoto1. In Makoto, a player stands in the center of an equilateral triangle, with a 6-

foot tall metal column situated on each of the three corners of the triangle. Each column

features ten clear panels containing lights and pressure sensors, all of which are spaced

at intervals and face the player at the center of the triangle. Each column also features a

speaker and represents an ‘opponent’ for the player to battle with. The player uses one

piece of equipment, consisting of a four foot fiber-glass pole with lightly padded ends.

The object of Makoto is for the player to continually strike the randomly appearing

lights on each of the columns as fast as possible using the pole. When the game starts,

one of the lights on a random column’s target panels light up and the column emits a

tone through its speaker. The player must hit the target panel with the pole; a successful

strike will cause the light to go out and the column to emit a confirming tone. Shortly

after the player has done so, another randomly selected target panel will light up on

a randomly selected column. The objective is to hit each light in sequence, as quickly

as possible, without missing any, as the computer controlling the lights monitors the

player’s reaction time. As the game progresses, the interval between each new light and

the amount of time it is lit decreases, with the overall objective of the game to make it

to the end of the final level without missing a single panel.

Air Makoto uses a similar game design, with the exception that only two columns are

used, both of which are imaginary. The player must therefore define where in space
1http://www.makoto-usa.com/new/index.html

Chapter 4. Recognition of Static Semiotic Musical Gestures 71

they want the columns’ target panels to be located. For simplicity, three target panels

for each column were used and the player was asked to ‘punch’ the air targets when

prompted, rather than hitting them with a pole. Using Air Makoto, the classification

abilities of the ANBC algorithm were tested by using the algorithm to recognise whether

a player had successfully hit the corresponding target panel when prompted. A Polhemus

Liberty 6-degrees of freedom (DOF) magnetic tracker was used to track the participants’

movements, using custom built motion capturing software. The Polhemus was sampled

at 120Hz using two tracking sensors, one of each mounted on the top of a small glove that

each participant was asked to wear on their left and right hands. The Polhemus data

was streamed directly into EyesWeb via OSC, after which the position data from both

sensors was sent to the ANBC block for training/prediction, along with being sent to a

hit detection algorithm to recognise the punch gestures. EyesWeb then sent the ID’s of

any punch gestures that were recognised via OSC to Processing2 which contained a game

engine, to keep track of the participant’s progress during a game, and a visual engine,

that provided the participant with a 3D virtual game environment for visual feedback,

as illustrated in Figure 4.8. The input vector to the ANBC algorithm consisted of a

6-dimensional vector containing the smoothed x, y and z position values of each sensor

mounted on the participant’s hands. The position data was smoothed using a simple

moving average filter with a buffer size of 5.

Figure 4.8: The 3D virtual game environment used in Air Makoto.

2http://processing.org/

Chapter 4. Recognition of Static Semiotic Musical Gestures 72

4.5.2 Hit Detection

In Air Makoto, a participant was evaluated as being able to correctly hit a target panel

if they made a punching gesture at the imaginary location of the correct target panel

before the target panels light went out. The ANBC algorithm was used to detect if the

player’s hand was in the correct target area, however, the game also required a way of

detecting if a punch gesture was made. A punch gesture was detected by taking the first

derivative of the position data from the X, Y and Z axis of both sensors on the left and

right hands. The position data was first low pass filtered using a moving average filter

with a buffer size of 5 prior to differentiation. The differentiated signal was then passed

through a dead zone block which zeroed any value between the range of -1.0 to 1.0,

offsetting any value either above or below this range by -1. The output of the dead zone

block was passed through a threshold crossing block that was triggered with an upwards

threshold crossing above the value of 0.1. The signals resulting from each of these signal

processing steps are illustrated in Figure 4.9. Using these signal processing techniques,

a robust punch detection algorithm was created as the thresholding block would only

trigger an output if a significant negative-positive change of direction occurred in any of

the three axes of either hand. If a threshold crossing was detected then EyesWeb would

check to ensure that the ANBC algorithm was predicting that one of the corresponding

target areas was active, areas 1,2 or 3 for a left handed punch or areas 4, 5 or 6 for

a right handed punch, if the correct punch occurred in the correct area then EyesWeb

would send a message to the Air Makoto game engine running in Processing to inform

it of the punch.

4.5.3 Location And Setup

This experiment took place in the Interaction Room at the Sonic Arts Research Centre,

Queen’s University Belfast. Each participant was asked to stand on a marked location

in the room and face a large projection screen situated three meters in front of them and

two meters to their right. A pair of speakers was placed on either side of the screen to

provide audio feedback. The projection screen displayed the Air Makoto virtual game

scene, which consisted of two wooden columns placed on the left and right of the main

view (as illustrated in Figure 4.8). Each column featured three dark red panels, which

would change to bright red when the participant needed to hit them.

Chapter 4. Recognition of Static Semiotic Musical Gestures 73

Figure 4.9: An example of the four main signal processing steps of the hit detection
algorithm used to detect punches in the Air Makoto game. Moving from top down the
four images shows: z position smoothed data, first derivative of z, dead zone of the
derivative signal and finally the upwards threshold detection on the dead zone signal.

4.5.4 Participants

Twelve participants were recruited from the SARC research community via email. The

sample group consisted of nine males and three females with an average age of 29 (stan-

dard deviation of 2.96). Six of the participants were right handed and none of the

participants had any conditions that would have affected them in performing any of the

movements required in this experiment.

4.5.5 Method

A within-subject experimental design was used, in which each participant was asked to

play the Air Makoto game in two conditions. Condition A used the ANBC algorithm

without the adaptive online training mode and condition B used the ANBC algorithm

with the adaptive online training mode. Prior to playing the game in either condition,

each participant was given specific instructions about how to play the game and what

they needed to do to train the system to recognise the location of their target panels.

None of the participants were told that the Adaptive Näıve Bayes Classifier was being

used to recognise their gestures. The experiment was divided into three phases, with

an initial data collection phase followed by a practice phase and a game phase. The

Chapter 4. Recognition of Static Semiotic Musical Gestures 74

initial data collection phase was only run once per participant with the data captured

in this phase being used to train the ANBC model. The practice and game phases were

repeated for each of the two conditions. The order in which each participant completed

the two conditions was randomised to account for any learning effects that might occur

over the previous practice and game phases.

4.5.5.1 Data Colletection Phase

To gather the initial training data required to train the ANBC algorithm for both con-

ditions, the participant was asked to move their hand around the location of where they

wanted to place each of the three target panels for each column. The participants were

asked to only use their left hand to train and hit the three target panels on the left-most

column and to only use their right hand to train and hit the three target panels on

the right-most column. For the actual training stage, each target panel on the screen

would light up yellow indicating for the participant to move their respective hand to

the location that they wanted that target panel to be placed. The target panel would

then light up red, indicating that the training data was being recorded, at which point

the participant was instructed to move their hand around the location of the target

panel covering a sphere with a diameter of approximately 12-inches. After 5 seconds

the training data for that target panel would stop being recorded and the next panel

would light up yellow indicating that the training data for that target panel was about

to be recorded. This was repeated until the training data for all of the target panels was

recorded.

4.5.5.2 Practice Phase

The participant then entered a practice phase which lasted for one minute. In the

practice phase all audio and visual feedback was turned on. For condition A, the original

training data was simply reloaded and the adaptive training mode was turned off. For

condition B however, the adaptive training mode was turned on during the practice

phase. At no stage in the experiment could the participants see a representation of

the position of their hands in the virtual world as this would have made the game too

easy. However, during the practice phase an additional piece of visual feedback was

provided in the form of a white square that would light up around any target panel if

the participant had their hand in the location of that target panel. This visual feedback

gave the participants valuable information in terms of whether they had their hands in

the correct location or not. The participants also received audio feedback in the form

of a punching noise if they were able to successfully ‘hit’ an illuminated target panel

Chapter 4. Recognition of Static Semiotic Musical Gestures 75

in the time allotted. This audio feedback informed the participants as to whether they

were punching in the correct location and also making the correct punching gesture to

trigger a punch. All of the 10 participants were able to perform the correct punching

gestures, if they could remember where they had placed the target locations.

4.5.5.3 Game Phase

After the participants had completed their one minute practice phase, they were then

asked to play the main game during which their successful hit scores would be recorded.

The main game lasted a total of two minutes, during which time the participants had to

hit 50 randomly selected virtual target panels. To ensure the game was not too easy for

the participants, each panel was only illuminated for 1.5 seconds, with the result that a

participant had to react very quickly to hit the correct target panel. During the main

game the participants only received the visual feedback informing them of which target

panel they needed to hit. The ‘correct target area’ visual feedback and ‘correct punch

noise’ audio feedback were both turned off, resulting that each participant was unsure

whether they were hitting the correct target panel in time or whether they were even

punching the correct area of space at all. At the end of the two minute game the correct

hit accuracy score was displayed on the screen, informing the participant how well they

had performed overall during that main game. Each participant was then given a small

amount of time to rest before starting the practice phase again, only this time with

a different condition being used. After the second practice phase the participant then

played the main game one final time after which their scores were recorded.

4.5.5.4 ANBC Settings

For this experiment, the maximum training buffer size parameter was set to 600 to

ensure that the number of training examples in the initial training data set would be

equal to the number of training examples used to retrain the ANBC algorithm during

the practice phase in condition B. The update rate was also set to 240, resulting in the

ANBC model being recomputed every two seconds during the practice phase in condition

B. The γ parameter was set to 5 for all conditions.

4.5.6 Results

Table 4.1 contains the results for all 12 participants across both conditions. All of the

participants, with the exception of participant 8, achieved a higher score in condition

B which used the adaptive function compared with condition A which just used the

Chapter 4. Recognition of Static Semiotic Musical Gestures 76

training data collected in the initial data collection phase. A paired t-test analysis

on these results showed that there was a significant overall improvement between the

participants’ scores in condition A when compared to that of the participants’ scores in

condition B (p = 0.0028).

4.5.7 Discussion

The participants’ scores in table 4.1 show that all the participants, with the as mentioned

exception of participant 8, achieved a higher score in condition B when the adaptive

online training function was used as compared with condition A in which only the initial

training data was used; but why? One observation noted during the course of the

study may explain these results, in that the majority of participants found it difficult

to remember exactly where they had placed some or all of their target zones, even 30

seconds after they had just specified their locations. Because of this inability to locate

the target zones, many of the participants had to spend the first 30 seconds of the practice

phase just locating one or several of the target zones. In condition B, a difficult target

zone slowly adapted itself until the participant found it easy to locate, with many of the

participants remarking “ah, now I remember where it is”, unaware that the algorithm

was adapting the location and size of the target zone as the participant was exploring

its possible location in space. The outcome of this adaptive training resulted in the fact

that, for the majority of participants, they were consistently successful at hitting the

flashing target panels by the time the practice mode ended. In condition A however,

many of the participants were still unsure of exactly where they needed to punch for

one or more of the target panels by the time the practice mode ended. This observation

highlights two important points for the application of such ‘free space’ gestures for both

MCI and the wider HCI community. The first is a performer’s ability to remember the

precise location of a point in space and the second is the importance of some form of

visual or audio feedback to inform the user how far they are from any target location.

For this experiment a world-centered frame of reference (FoR) (O’Modhrain (2004))

was used, in which the participant’s movements were tracked relative to the 3D space in

which they were moving. The participants may have found it easier to locate the target

areas if a body-centered FoR, in which the target areas were always relative to the user’s

body, was used instead. A body-centered FoR may have helped the user, as a target

area placed at eye-level and arms reach at the user’s right, for example, would always be

at this body-centered-location irrespective of where in the room the participant moved.

A body-centered FoR could have been achieved using a third tracking sensor placed on

the participant’s chest, for example, from which the position coordinates of all the other

sensors could be translated.

Chapter 4. Recognition of Static Semiotic Musical Gestures 77

Participant # 1 2 3 4 5 6 7 8 9 10 11 12
Condition A 25 24 28 13 13 16 34 38 18 17 40 21
Condition B 29 42 31 24 17 31 42 36 19 19 45 36

Table 4.1: The scores from the game phase of Air Makoto for all 12 participants
for conditions A and B. The adaptive training was only used in condition A. Each
participant gained one ‘point’ for each target correctly hit within the alloted time, with

the maximum score possible in either condition of 50 points.

Obviously, the participants would have achieved a higher score if they were allowed to

move their hands around a much larger area of space in the initial data collection phase

as this would have created a much larger ‘target zone’, enabling the participant to be less

accurate. To mitigate this, the participants were deliberately instructed to only move

their hands around a spherically volume with an approximate diameter of 12 inches.

This constraint, combined with the speed at which the random panels appeared in the

main game phase ensured that the game was difficult enough to prove a challenge to

the participants. This is confirmed by the results over all participants and across both

conditions as none of the participants were able to successfully hit all 50 of the targets.

Participant 8, the only participant to achieve a better score in condition A over condition

B, achieved an above average score (µA = 23.92, µB = 30.92) of 38 and 36 for conditions

A and B respectively. A possible reason of this participant achieving a better score in

condiiton A over condition B is that his ‘target zones’ were already optimally trained

from the initial training data and the difference in score simply resulted from a better

performance in condition A over condition B.

4.5.8 Conclusion

The results from this study suggest that the classification abilities of the ANBC algo-

rithm are significantly improved when the adaptive online training function is used. It

is believed that the adaptive online training function improved the participants’ scores

in the Air Makoto game because the majority of participants failed to remember the

exact location that they had defined their ‘target panels’. The adaptive online training

function therefore enabled, in combination with the visual and audio feedback in the

practice phase, the location and size of each target zone to adapt to the participants

practice gestures. This resulted in the majority of participants being able to success-

fully ‘hit’ each target panel by the end of the adaptive training phase, were as in the

none-adaptive training phase the same participants struggled to achieve consistent ‘hits’.

Although this study shows the benefits of an adaptive model in a simple pointing style

task, it is believed that the ANBC algorithm will prove as useful in the classification

Chapter 4. Recognition of Static Semiotic Musical Gestures 78

of similar musical semiotic gestures, particularly those static gestures that consist of a

continuous-valued, randomly corrupted version of a single prototype vector which may

itself slowly change over time.

4.6 Summary

This chapter has presented the Adaptive Näıve Bayes Classifier, an algorithm that has

been specifically designed for the recognition of static semiotic musical gestures. The

standard Näıve Bayes Classifier was extended with the ability to automatically compute

a classification threshold for each of the G classes in a trained model, enabling the

algorithm to classify null gestures without having to first compute a null-model. A novel

adaptive element to the algorithm was also added, enabling a trained ANBC model to

automatically adapt itself to accommodate a performer as they adapt their own gestures

over, for example, the course of a rehearsal period. The chapter was concluded with a

study to demonstrate the classification abilities of the ANBC algorithm, with the results

showing that a significant overall improvement was achieved between the participants’

scores in the condition that used the adaptive element of the algorithm. The next chapter

now looks at how non-static musical gestures, i.e. gestures that consist of a cohesive

sequence of movements that occur over a variable time period, can be recognised and

therefore be used for musician-computer interaction.

Chapter 5

Recognition of Multivariate

Temporal Musical Gestures

Failures are finger posts on the road to achievement.

C. S. Lewis

The previous chapter presented the Adaptive Näıve Bayes Classifier, a novel algorithm

that has been specifically designed for the recognition of static symbolic musical ges-

tures. This chapter addresses the recognition of multivariate temporal musical gestures.

The challenges of recognising temporal gestures, as opposed to static postures, are first

outlined. This is followed by a description of a data set containing multivariate temporal

gestures that has been specifically collected to test the algorithms in the remainder of this

thesis. A powerful machine learning algorithm called an Hidden Markov Model (HMM)

is presented along with a description of how the standard HMM has been modified for

the recognition of multivariate temporal musical gestures. The chapter is concluded with

a number of experiments designed to evaluate the classification abilities of the modified

HMM algorithm.

5.1 Multivariate Temporal Gestures

Temporal gestures consist of a cohesive sequence of movements that occur over a variable

time period and generally pose a more challenging recognition problem than classify-

ing static postures. Due to the nature of human movement, any repeated movement

will feature temporal variability, even in an optimal task condition. This variability

can be both intrapersonal (the variability of one individual attempting to repeat the

79

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 80

same movement) and interpersonal variability (the variability of multiple individuals at-

tempting to repeat the same movement). Such variability makes the classification of any

gesture that involves a temporal element (as opposed to a static posture) difficult as the

gesture may never be performed at exactly the same speed, amplitude or location. If the

classification problem features high dimensional data, the machine learning algorithm

must not only model the relationship between the multidimensional data at time t, but

also model how this relationship changes over time. This type of pattern recognition

problem can be viewed as a multivariate temporal classification problem (Bishop, 2006).

5.1.1 An Overview Of The Classification Problem

One issue that commonly occurs in multivariate temporal classification, is how two vec-

tors of different lengths can be compared. This is because the more common distance

measures between two vectors such as the Euclidean distance, root mean squared dis-

tance or the cosine of the angle between the two vectors will not work for vectors of

different lengths. This renders common distance measures useless for the recognition of

temporal musical gestures. If there is any temporal variability in the movement at all

then the distance measure will give a poor classification result.

A machine learning model must therefore take the temporal variation of a signal into

account, as is the case with algorithms such as a Hidden Markov Model or the Conden-

sation Algorithm. Alternatively, the temporal variation can be removed by the feature

extraction stage, after which a feature vector containing the normalised temporal win-

dow, or features that describe it, can be used as input to a machine learning model for

classification.

The difference between these two approaches can be expressed via the analogy of analysing

pictures and videos captured of the same event. In the former method, the feature ex-

traction process will look at each picture, with no regard for any previous picture it has

seen, and will try and classify the current picture into one of n discrete possible types of

pictures. It will then send to the machine learning algorithm (such as a Hidden Markov

Model), the index that represents the nth discrete picture. The model will now try to

classify the event by looking at the order in which the last w indexed values arrived.

Alternatively, in the latter method, the feature extraction process will view the entire

video and create a feature vector that best describes how the video changes over time.

This feature vector is then used as the input to an algorithm such as a Support Vector

Machine or an Artificial Neural Network for classification.

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 81

5.1.2 The Performance Factor

Perhaps one of the most challenging aspects of using real-time gesture classification in

a live performance scenario is the effect the performance itself will have on the gestures

being made. This is due to the stress that is to be expected when performing any

type of live piece in front of an audience (whether using real-time recognition or not).

Further, the context of performance is inherrently a communication between performer

and audience, so that the performer will likely adapt their movements as they ’perform’

in front of their spectators. The performance context can cause the musician to make a

number of temporal and spatial errors that they may not have made during rehearsals.

If the machine learning model being used does not have a robust generalisation error,

then any deviation from the original gestures that were performed during the training

of the model in rehearsal will fail to be correctly classified during the live performance.

This is of particular importance when the sensors being used are biometric, such as EMG

(Electromyography) or GSR (Galvanic Skin Response), as the baseline values that are

captured by these devices during the rehearsal may be drastically different from that

captured during the live performance.

There are a number of steps that can be taken to mitigate this problem. The first is to

use a robust calibration method in both rehearsals (when the data to train the model

may be captured) and at the start of the live performance. This could be as simple as

taking the minimum and maximum values of the sensors at that time and then using

min-max normalisation to scale any value between a fixed output range (i.e. 0.0 - 1.0).

Another option is for the performer to train their machine learning model just prior

to going on stage (perhaps in a mirrored system backstage). Here it is hoped that the

difference between the stress levels of the performer minutes prior to the performance

and that of their levels when they are on stage will be insignificant; thus the models

ability to recognise the gestures on stage should not be affected.

Alternatively, the performer could use a completely different approach and train their

models live on stage. One interesting method for approaching live-training is to use

a play-along metaphor, where the performers will mimic their gesture along to a pre-

processed piece of audio (e.g. as in Merrill and Paradiso (2005) and Fiebrink et al.

(2009)). At the same time the machine learning model will learn the mapping between

the performer’s movements and the event or effect being triggered. The performer can

then take ‘live-control’ of the system after the model has evaluated itself using cross-

validation and the resulting generalisation error has reached a pre-defined value.

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 82

5.1.3 Gesture Segmentation

One of the main problems with the recognition of multivariate temporal signals is in

determining when the start and the end of a gesture occurs in a continuous stream of

input data. This is one area of research across many areas within HCI that has seen little

progress despite numerous attempts at solving the problem (Junker et al., 2008b). This

task is difficult due to the segmentation ambiguity between two gestures and the spatio-

temporal variability that occurs in all human movement (Mitra and Acharya, 2007).

The segmentation ambiguity occurs when the performer moves from their current state

to the a priori state of the next gesture. In moving to this a prior state the system

may incorrectly classify these intermediate movements with a reference gesture, yielding

what is known as a false-positive classification.

5.1.3.1 Trigger Keys

There are a number of methods for approaching the gesture segmentation issue. The

first is to use an ‘alt’ or ‘trigger’ key (as used by Merrill and Paradiso (2005)). This

method is perhaps the most robust as the system will never try to classify a gesture

unless the user has triggered the ‘alt’ key. A similar method is to use a particular range

of values of a sensor as a ‘gesture zone’, with the system only classifying the data when

the values of that sensor are within the gesture zone. If, for example, the performer

was using an accelerometer placed on their hand, they could define the gesture zone to

be when they turn their palm up towards the ceiling, with no gestures being classified

if their hand is not in this orientation. If spatial information can be derived from the

sensors being used (such as a video camera or a magnetic tracker), then areas of space

can be used as gesture zones. Using this method, a system will not try to classify any

movements as a gesture until the user moves into one of the designated gesture zones.

5.1.3.2 Sliding Windows

Alternatively, the performer could use another common gesture segmentation method

and use a fixed size sliding window that is run continually over the data. This method

has the benefit of continually analysing the data without the user having to trigger

something first. It does however have the drawback that the system may classify a body

movement that is not intended to be a gesture (a null gesture) as one of the gestures in

the system’s trained model. The sliding window may also cut off some of the gesture if it

is performed particularly slowly, or alternatively include a lot of non-gestural information

in a window if the gesture is performed very quickly. To mitigate the false classification

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 83

of a null gesture, this type of segmentation method requires either a null model (such as

a noise or silence model in speech recognition) or a classification threshold value (as was

used in the Adaptive Näıve Bayes Classifier in the previous chapter) to stop the system

classifying null gestures.

5.1.3.3 Activity Detection

Another gesture segmentation method that is frequently employed is to use a state

machine to detect periods of low movement activity in one or more channels of the sensor

data (as used by Yoon et al. (2001)). The performer of the gesture would intentionally

insert a short pause prior to the start of a gesture and also just after they have completed

it. The state machine would then detect the two periods of low activity and take

the recorded data between these sections and give this to the recognition process for

classification. This method has the benefit of excluding any intermediary movements

from being incorrectly classified but does have the drawback of introducing an unwanted

delay in the recognition process along with constraining the movements of the performer.

This method is more suited as a training tool for segmenting gestures in the training

stage of a system rather than a segmentation method for real-time recognition.

5.1.3.4 Musical Segmentation Cues

Music affords one important advantage for the segmentation of musical gestures as the

sound, or lack-of sound, can itself be used to segment and verify that a specific gesture has

started or ended. For example, a performer could use the occurrence of a specific note,

such as an F#, to trigger the computer to start analysing their hand gesture directly

after the playing of this note. A pitch following algorithm could be used to analyse

the real-time signal from a microphone capturing the sound of the performer playing.

If the trigger note has been played the computer could then analyse the movement of

the performer and use this movement to control how the recently captured audio is

warped/effected/mapped by the machine.

5.1.4 Multivariate Temporal Recognition Summary

Multivariate temporal gestures are more difficult for a machine learning algorithm to

recognise than static postures because of the inherent variability in human movement

combined with the complex task of segmenting a multivariate temporal gesture from a

continuous stream of data. There are a number of methods for segmenting a multivariate

temporal gesture, such as using a trigger key, continually analysing the data with a

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 84

sliding window, first applying an activity detection algorithm to remove periods of low

activity from being analysed and using musical segmentation cues to trigger the start or

end of an analysis window. Throughout this thesis, each multivariate temporal machine

learning algorithm has been tested using both the ‘trigger key’ and ‘sliding window’

segmentation methods. The focus was placed on these segmentation methods as they

both help validate the real-time classification abilities in two opposing ways; namely

they validate the robustness of a classifier in the best-case scenario (i.e. when a gesture

has been manually segmented using a trigger key) and the user-friendliness of a classifier

(i.e. when the system automatically detects a gesture in a continuous stream of data

using a sliding window). The trigger key and sliding window segmentation methods

were chosen because:

1. Trigger Key: This segmentation method is the most robust out of the four

segmentation methods as the performer is manually segmenting a gesture for the

machine learning algorithm by pressing a key to indicate when a gesture starts and

ends. This segmentation method therefore validates the ‘best-case’ classification

abilities of any machine learning algorithm. Although this segmentation method

may provide the most robust classification results, it is somewhat cumbersome for

MCI as it forces a musician to press some form of trigger key to indicate that they

are performing a gesture. This may not be a problem for some musicians as it

might be possible to easily incorporate a simple trigger key on some part of their

instrument. However, a large number of musicians may find a trigger key both

impracticable and aesthetically unpleasing.

2. Sliding Window: This segmentation method is not as robust as the trigger key

method, however, it has a significant advantage for MCI as it can be used to

automatically segment a gesture. This may be more practicable and aesthetically

pleasing for a musician as they do not need to press any key to indicate to the

recognition algorithm that they have just performed a gesture.

The activity detection and musical segmentation cues are both useful segmentation

methods, however, they only work in certain scenarios. For example, the activity detec-

tion algorithm only works in a scenario where a performer is able to make a small pause

in their movement either before or after a gesture. Alternatively, the musical segmenta-

tion cue only works if a performer is actually playing an instrument and would therefore

not be suitable for the control of a VMI or to recognise the gestures of a conductor for

example. It was for these reasons therefore that neither the activity detection or musi-

cal segmentation cues would be used to validate the machine learning algorithms in this

thesis. Although the aforementioned segmentation methods were not used to validate

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 85

the machine learning algorithms in this thesis, each method has been regularly used in

various live recognition scenarios. EyesWeb blocks, such as the Activity Detector and

State Machine blocks, have therefore been developed to enable other performers to use

these segmentation tools if they believe that segmentation method is appropriate for

their recognition scenario.

5.2 The Numbers-Shapes Data Set

In order to test a machine learning algorithm’s ability to recognise a multivariate tem-

poral signal, a data collection session was ran during which 10 participants where asked

to perform 10 different temporal gestures, illustrated in Figure 5.1. Rather than asking

each participant to perform 10 specific musical temporal gestures, 10 generic gestures

were chosen instead as this assured that each participant would fully understand the

gesture they needed to perform, regardless of their musical experience. Each participant

was asked to ‘air-draw’ the following numbers and shapes:

Gesture 1-5: The numbers 1- 5

Gesture 6: A square

Gesture 7: A circle

Gesture 8: A down-beat conducting gesture

Gesture 9: A side-beat conducting gesture

Gesture 10: A triangle

5.2.0.1 Location and Setup

The recording sessions took place in December 2009 in the Surround Sound Studio at

the Sonic Arts Research Centre, Queen’s University Belfast. A Polhemus LibertyTM6-

degrees of freedom (DOF) magnetic tracker was used to track the participants’ move-

ments, using custom built capturing software in EyesWeb. The Polhemus was sampled

at 120Hz with one sensor placed on each of the participants’ wrists on top of a wristband

to provide maximum comfort. Each participant was asked to stand on a marked location

in the room and face a screen situated three meters directly in front of them. The screen

was used to display the animations of each gesture the participant needed to perform.

Small speakers where placed either side of the screen to provide audio feedback to the

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 86

Figure 5.1: An example of each of the gestures in the Numbers-Shapes data set. This
data is taken from the first trial of each gesture for participant one. The data has been
znormalised and the red, green and blue colors represent the x, y and z axis respectively.

participant. The base-station of the magnetic sensor was placed one meter to the rear

and to the left of the participants’ location. All the channels of data along with the

current gesture index and gesture state (see section 5.2.0.3) were recorded to a file on a

laptop computer using EyesWeb.

5.2.0.2 Participants

Ten participants were recruited via a distributed email from the QUB School of Music

& Sonic Arts. The sample group consisted of seven males and three females with an

average age of 29 (standard deviation of 2.8). All of the participants were right-handed.

None of the participants had any conditions that would have affected them in performing

any of the gestures required in this experiment.

5.2.0.3 Automatic Gesture Tagging

To enable the easy extraction of the gestures from the recorded data, each participant

was asked to define a ‘gesture zone’ with their left hand. This zone was simply an area of

space that the participant would move their left hand to, prior to performing a gesture.

The ANBC algorithm described in chapter 4.3 was used to recognise if the participant’s

left hand was either in or out of the ‘gesture zone’. The participant would hold their

left hand in this location, while at the same time performing the gesture with their right

hand. The participant would then move their left hand from the ‘gesture zone’ after

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 87

they had completed the gesture. A 120Hz sine wave was played through the speakers

in front of the participant to inform them that their hand was in the gesture zone and

that the system was recording their gesture. EyesWeb then tagged the current motion

data with either a 0 when the participant was not in the gesture zone and a 1 when they

were performing a gesture (see Figure 5.2). This data was then saved to a file. Each

participant was given time to practice the order in which they should move their hands

for each gesture performance, i.e right hand to the a priori gesture position, left hand

to the gesture zone, right hand performs the gesture, left hand out of the gesture zone,

both arms relaxed, repeat.

Figure 5.2: Tagging the gesture data with the gesture state marker.

5.2.0.4 Instructions

After filling out the consent form and questionnaire, each participant was informed of

the purpose of the study and the procedure of the recording session. Each participant

was then instructed where to stand and the Polhemus sensors were attached to the

participant’s wrists. Each participant could then define the area of space they wanted

to use to indicate they were performing a gesture. Each participant was shown an

animation of the gesture they next had to perform. When the participant was happy

that they understood the gesture, the data collection system would be turned on and the

participant would perform 25 repetitions of the gesture, with a short pause in between

each repetition. The researcher present would count the number of repetitions and

instruct the participant when they could stop. If the participant felt that they had made

an error during a gesture, they would notify the researcher and that incorrect gesture

would be removed from the data during the post-processing stage. The participant was

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 88

then shown the next gesture and repeated 25 repetitions of that until all 10 gestures

were complete. The participant could rest at anytime either during or in between a

gesture data collection session. The order in which each participant was presented the

10 gestures was randomised to account for fatigue.

5.2.0.5 Post-processing

Prior to classification, each participants’ data was loaded into Matlab1 and grouped

into a common data structure. The 25 repetitions of each participants’ gestures were

segmented using the automatic gesture tagging system described in section 5.2.0.3. The

segmented data was then saved to a number of file formats appropriate for subsequent

processing.

5.2.0.6 Error Measures Used For Testing

The remainder of this chapter and the next two chapters present and evaluate three

algorithms that can be used for the real-time recognition of multivariate temporal ges-

tures. The following classification errors were used to evaluate the recognition abilities

for each algorithm:

• Average Cross Validation Ratio:

(ACVR) = 1
P

∑P
p=1

1
K

∑K
k=1

Number of correctly classified gestures in fold k for participant p
Total number of gestures in fold k for participant p

• Average Correct Classification Ratio:

(ACCR) = 1
P

∑P
p=1

Number of correctly classified windows per participant p
Total number of windows per participant p

• Average Precision Ratio:

(APRi) = 1
P

∑P
p=1

Number of instances correctly classified for gesture i for participant p
Number of instances classified as gesture i for participant p

• Average Recall Ratio:

(ARRi) = 1
P

∑P
p=1

Number of instances correctly classified for gesture i for participant p
Total number of instances from gesture i for participant p

• Average Null Recall Ratio:

(ANRR) = 1
P

∑P
p=1

Number of instances correctly classified as null for participant p
Total number of null instances for participant p

where P = the number of participants (i.e. 10) and K = the number of cross validation

folds (i.e. 10).

These error values provide the following information:
1http://www.mathworks.co.uk/

http://www.mathworks.co.uk/

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 89

• The ACVR provides an indication of the performance of the classifier across all

the participants using cross validation

• The ACCR provides a global indication of the performance of the classifier across

all the participants

• The APR provides an indication of the exactness of the classifier for each gesture

across all the participants ignoring the null gestures

• The ARR provides an indication of the performance of the classifier over a specific

gesture across all the participants ignoring the null gestures

• The ANRR provides an indication of the performance of the classifier at correctly

classifying the null gestures

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 90

5.3 Hidden Markov Models

Hidden Markov Models (HMMs) are frequently used across a wide range of fields, such

as speech recognition (e.g., Rabiner, 1989 and Inoue et al., 2011), on-line handwriting

recognition (e.g., Al-Muhtaseb et al., 2008 and Awaidah and Mahmoud, 2009) and hand

gesture recognition (e.g., Chen et al., 2003 and Al-Rajab et al., 2008), for the clas-

sification of sequential data. The standard Hidden Markov Model requires a discrete

integer value, otherwise known as a symbol, as input for classification as opposed to a

N -dimensional feature vector. An HMM can be extended to a number of continuous

probability distributions, such as in the work by Pylvänäinen (2005), but the following

description of the algorithm will focus on discrete probability distributions. In this in-

stance an N -dimensional feature vector must be mapped to a discrete integer symbol

using what is commonly known as a codebook. Prior to describing the HMM algorithm,

a description of how an N -dimensional signal can be quantised into a discrete integer

symbol using a technique known as vector quantisation will be presented.

5.3.1 Vector Quantisation

The standard HMM algorithm works under the assumption that the input to the algo-

rithm for both training and testing will be a 1-dimensional vector of length T containing

discrete observation symbols in the range of 1 to M . This means that, for many real-

world problems, the output of an N -dimensional sensor must be quantised to a discrete

observation symbols using a codebook.

5.3.2 Vector Quantisation Using k-means Clustering

The k-means clustering algorithm (MacQueen, 1967) is commonly used as a method for

vector quantisation (e.g. as used by Yoon et al. (2001) and Chen et al. (2003)). Using

the training set, the k-means algorithm attempts to group the training data into K

clusters (with K set manually by the user). The K cluster centers can then be used to

quantise any new datum by finding which cluster center the datum is closest to.

5.3.2.1 Training the k-means Algorithm

K-means is an unsupervised machine learning algorithm and can therefore be trained

by grouping the unlabeled training data set x = {x1,x2, . . . ,xM}, consisting of M

observations of a random N -dimensional Euclidean variable x, into K clusters. Each

cluster is represented by µk, a N -dimensional vector containing the centers of the cluster.

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 91

The k-means algorithm is trained using a classic two-stage expectation maximization

(EM) approach, where in the E-step, each of the data points is assigned to the kth

cluster center that results in the minimum sum of the squares distance between the

data point and the cluster’s center. In the M-step, each of the cluster centers, µk,

is then updated by recomputing the mean of all the data points that belong to that

cluster. This two-step training process is repeated until either a set number of iterations

has been reached (i.e. 1000) or until a convergence criteria has been reached (i.e. the

cluster centers have not moved beyond a given threshold). The initial values for µk are

commonly set to the values of K random data points.

The k-means clustering algorithm is therefore (MacQueen, 1967):

1. Initialize µk to a random data point from x

2. E-Step: Set the ith class label, ci, to the kth closest cluster

ci = arg min
k

N∑
j=1

(
xij − µkj

)2

1 ≤ i ≤M (5.3.1)

3. M-Step: Set µk to the mean of all of the data points assigned to cluster k

4. Repeat steps 2 - 3 until convergence

At each iteration, the objective function, θ, can be computed indicating the overall

effectiveness of the algorithm. This function, also called a distortion measure (Bishop,

2006), represents the sum of the squares distances of each data point to its assigned

cluster center. The overall goal of the k-means algorithm is to find the values of ci and

µk so as to minimize θ.

θ =
M∑
i=1

||xi − µci ||
2 (5.3.2)

Using θ, the most suitable initial starting points for the clusters centers can be found by

running several instances of the k-means algorithm and checking which instance has the

minimum value of θ after the first few iterations. The instance with the minimum value

of θ can then be continued until it has converged with the remaining instances stopped.

Figure 5.3 illustrates the k-means clustering algorithm.

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 92

(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6

Figure 5.3: An illustration of the k-means clustering algorithm on a data set generated
from two Gaussian distributions. The clustered data points are shown by the red and
blue points with the cluster centers circled in black. For this problem, the algorithm

converged in just 6 iterations.

(a) The converged clusters with each class shown by the
red, green and blue points. The black circles indicate
the cluster centers

(b) The Objective Function for each Iteration

Figure 5.4: An illustration of the k-means algorithm being run on 3 classes of data
generated by 3 Gaussian distributions. The left image shows the converged clusters after

25 iterations with the right image showing the objective function at each iteration.

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 93

5.3.2.2 Quantisation using the k-means Algorithm

After the k-means algorithm has converged the clustered training data can be used to

create the codebook. Two methods are commonly used to quantise a new training/test

sample using the pre-clustered data. The first is to compute the distance (typically

Euclidean) between the new sample and each of the k-cluster centers, with the new

sample’s quantisation value set to the ID of the cluster center resulting in the minimum

distance. The second method is to use all the pre-clustered data, rather than just the

cluster centers, and use the k-nearest neighbor algorithm (k-NN) to compute the new

sample’s quantisation value. k-NN will assign a new sample’s quantisation value to the

ID which is most frequent among the k training samples nearest to that sample in the

k-means cluster feature space.

(a) Quantisation using the minimum cluster center (b) Quantisation using the k-nearest neighbor algo-
rithm. Note that the new sample would be assigned
to a different cluster if a different k value is used. Clus-
ter A with k = 3 and cluster B with k = 10.

Figure 5.5: Quantisation using the minimum cluster center or the k-nearest neighbor
algorithm.

The k-NN algorithm would be more appropriate to use if the between-cluster center

distance was small, particularly if the within-cluster distance was large. It does, however,

require more memory and is computationally more expensive than the minimum cluster

distance algorithm, as every training example needs to be stored and sorted in a search

tree. The minimum cluster distance algorithm alternatively only needs to store the

cluster centers for each cluster. For this reason, the minimum cluster distance was used

to quantise the numbers-shapes data in the experiments that are presented later in this

chapter.

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 94

5.3.3 Vector Quantisation Using SAX

For many real-world classification problems, it was found that simply running the k-

means clustering algorithm on the raw data (a) took too long as there was a large

amount of data points to cluster and (b) did not work well when the data was noisy.

To mitigate this, the data was first quantised using Symbolic Aggregate Approximation

(SAX) after which the k-means clustering algorithm could be used to further quantise

the SAX data.

SAX is a technique for numerosity reduction that was first proposed by Lin et al. (2003)

and has since been used in a number of applications (e.g. Kasten et al., 2007, Lin

et al. (2007) and Ergovic et al., 2009). SAX reduces a 1-dimensional time-series, x =

{x1, x2, . . . , xL}, of arbitrary length L to a string, x̂ = {x1, x2, . . . , xS}, of arbitrary

length S, where S < L, containing discrete values within a finite range. Each value of

x̂ will be in the range of 1 to a, where a is the size of the alphabet being used. This is

illustrated by Figure 5.6.

Figure 5.6: An illustration of the SAX algorithm being used to quantise a 1-
dimensional waveform. The waveform is shown in red with the frame edges shown
in yellow and the break-points shown by the horizontal blue lines. The quantised al-
phabet value is shown in green. Here the frame size (f) is set to 20 with an alpha size

(a) set to 10.

Prior to discretising x, the time-series is first normalised to have zero mean and unit

variance. This is performed as it ensures that each time-series has a standard offset

and amplitude variance. It is also required as the discretisation process for SAX uses a

technique that produces symbols with equal probability that requires the data to have

zero mean and unit variance. After the time-series has been normalised it is segmented

into f frames, with the size of each frame (i.e. the number of data points in each frame)

given by f/L. The mean value of each frame is calculated and it is this value that is

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 95

discretised using the alphabet. The discrete alphabet value assigned to the mean of the

ith frame is given by:

x̂i = aj if Ψj−1 ≤ x̄i < Ψj (5.3.3)

where x̄i is the mean value of the ith frame and Ψ is a lookup vector containing the

break-point values of each letter in the alphabet. The break-point values for each letter

in the alphabet are set so that the area under a Gaussian distribution of N (0, 1) from

Ψj−1 to Ψ will be equal to 1/a.

If the input time-series, x, is in-fact a N -dimensional time-series as opposed to a 1-

dimensional time-series, then each dimension is quantised independently using the SAX

algorithm. The N quantised time-series are then recombined into a new N -dimensional

time-series, x̂ which is used as input to the k-means quantisation algorithm. This is

illustrated in Figure 5.7.

Figure 5.7: An illustration of the quantisation training phase in which the training
set is first batch quantised by the SAX algorithm, with the resulting quantised train-
ing examples being used as input to the k-means clustering algorithm. The k-means
algorithm will cluster the quantised training examples into K clusters, after which the
K cluster centers can be used to create the codebook that is required for the HMM

algorithm.

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 96

5.3.4 HMM Description

A Hidden Markov Model can be viewed as a state space model consisting of N discrete

states. Given an observation sequence O = {O1, O2, . . . , OT } of length T , a trained

HMM can estimate not only the probability of a single observation sequence being

omitted by a given state, but also the probability of an entire observation sequence

occurring given the model. This latter ability is key to the adaptation of HMMs for

the recognition of musical gestures as G separate HMMs can be trained, one for each of

the G gestures in a database, and an observation sequence (i.e. some real-time stream

of data) can be classified as being the gth model that gives the maximum likelihood.

In this work the standard HMM algorithm was specifically adapted to enable it to be

used to classify multivariate temporal musical gestures from a continuous stream of data

that also contains non-gestural data. Prior to describing how the algorithm has been

adapted its foundations will first be described. The following description is based on the

excellent HMM tutorial by Rabiner (1989).

5.3.5 HMM Components

Each HMM consists of the following elements:

1. N : The number of discrete states in the model. The state at time t is: t = qt.

Individual states are: S = {S1, S2, . . . , SN}.

2. M : The number of discrete observation symbols per state.

Individual symbols are: V = {V1, V2, . . . , VM}.

3. A N -by-N matrix A, called the transition matrix, giving the transition probability

of the ith state moving to the jth state, where:

Aij = P (qt+1 = Sj |qt = Si) 1 ≤ i, j ≤ N (5.3.4)

As A is composed of probabilities, it must have the properties that satisfy:

0 ≤ Aij ≤ 1 1 ≤ i, j ≤ N (5.3.5)

with
N∑
j=1

Aij = 1 1 ≤ i ≤ N (5.3.6)

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 97

4. A N -by-M matrix B, called the emissions matrix, that denotes the probability of

symbol m being emitted from the state n. Each element of B is given by:

Bij = P (Vj at t|qt = Si) 1 ≤ i ≤ N, 1 ≤ j ≤M (5.3.7)

with the normalisation condition of:

M∑
j=1

Bij = 1 1 ≤ i ≤ N (5.3.8)

5. The initial state distribution for t = 1, π = {π1, π2, . . . , πi}, where

πi = P (q1 = Si) 1 ≤ i ≤ N (5.3.9)

with the normalisation condition of:

N∑
i=1

πi = 1 (5.3.10)

6. A threshold value, τ , that enables the rejection of null gestures

An entire HMM is therefore given by:

λ = (A,B,π, N,M, τ) (5.3.11)

An HMM based recognition system with G gestures is given by:

λ = {λ1, λ2, . . . , λG} (5.3.12)

5.3.6 The Three Basic Problems for HMMs

With an HMM, there are generally three main problems to resolve:

1. Given the observation sequence O = {O1, O2, ..., OT }, and a model λ, how can

P (O|λ), the probability of the observation sequence given the model, be efficiently

computed?

2. Given the observation sequence O = {O1, O2, ..., OT }, and a model λ, how can a

corresponding state sequence S = {S1, S2, ..., ST } be chosen which is optimal in

some meaningful sense (i.e. that best explains the observations)?

3. How can the model parameters λ = (A,B,π) be adjusted to maximise P (O|λ)?

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 98

Problem 1 can be viewed as the real-time prediction phase. In this phase the probability

of viewing the captured observation sequence, given this particular model, needs to

be computed. This problem can be solved using the Forward-Backward algorithm.

Problem 2 can be viewed as attempting to uncover the most likely state sequence given

a particular observation sequence. This can be solved using the Viterbi algorithm.

Problem 3 can be viewed as the model training phase and can be solved by the Baum-

Welch algorithm. For the recognition of musical gestures, problems 1 and 3 are the

most critical to solve as these are used for real-time prediction and training respectively.

The Viterbi algorithm, which is used to solve problem 2, will therefore be omitted from

the following explanation as it is more useful for finding the optimal state sequences

for continuous speech recognition for example. Interested readers can find a detailed

description of the Viterbi algorithm in Rabiner (1989).

5.3.7 The Forward-Backward Algorithm

To enable the real-time recognition of a musical gesture, the probability of viewing the

observation sequence O, given the model λ, needs to be computed:

P (O|λ) (5.3.13)

One method of achieving this would be to calculate every possible state sequence of

length T (the number of observations) and to add the joint probability over all the

possible state sequences. This fairly straightforward approach has some severe draw-

backs however, as it would require O(2T (NT)) calculations, as at every time t, there

are N possible states which can be reached and therefore there are NT possible state

sequences. This means that this method becomes unfeasible, even for small values of T

and N . Thankfully an algorithm exists to resolve this issue, in the case of the Hidden

Markov Model this is known as the Forward-Backward algorithm (Baum and Eagon,

1967, Baum and Sell, 1968). There are several variants of this basic algorithm, of which

the most common, known as the alpha-beta algorithm, will be applied.

The forward-backward algorithm works under the assumption that, for the model to

be in a given state at time t then it must have moved there from a given state (which

could have been the same state) at time t − 1 and it will advance to a given state

(again this could be the same state) at time t + 1. This basic assumption can be used

to calculate, for each state in the model, the probability of advancing to that state at

time t given all the partially observed data up until t along with the next observation

at time t + 1, i.e. the forward estimate, and the probability of being in that state at

time t given all the future observed data, i.e. the backward estimate. The key to the

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 99

forward-backward algorithm is that since there are only N states in the model, all the

possible state sequences must re-emerge into these N nodes, no matter how long the

observation sequence. This reduces the number of computations from O(2T (NT)) for the

näıve algorithm above to O(N2T) for the forward-backward algorithm, thus changing

the computational complexity of the algorithm from exponential to linear as a function

of the observations.

5.3.7.1 The Alpha-Beta Algorithm

To implement the alpha-beta version of the forward-backward algorithm, two new T -

by-N matrices are required to keep track of the forward and backward estimates at each

time step (the forward matrix, α, and the backward matrix, β). At each time step, t,

the forward estimate for the jth state is given by the joint probability of observing the

next observation (t + 1) in state j with the previous accumulated forward estimate at

time t for state i along with the probability of moving from state i to state j:

αt+1j =
N∑
i=1

αtiAijBj(Ot+1) (5.3.14)

or, as j is constant over each summation and the observation emission probability of B

will therefore be constant, equation (5.3.14) can be rewritten as:

αt+1j =
[N∑
i=1

αtiAij

]
Bj(Ot+1) (5.3.15)

The backward estimate at time t for the jth state is given by the joint probability of

observing the next observation (t + 1) in state j with the last computed accumulated

backward estimate for state j at time t + 1 along with the probability of moving from

state i to state j:

βt(i) =
N∑
j=1

AijBj(Ot+1)βt+1j (5.3.16)

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 100

5.3.7.2 The Forward Algorithm

The forward estimate is given by:

1. Initialization:

α1i = πiBi(O1) 1 ≤ i ≤ N (5.3.17)

2. Induction:

αt+1j =
[N∑
i=1

αtiAij

]
Bj(Ot+1) 1 ≤ j ≤ N

1 ≤ t ≤ T − 1 (5.3.18)

3. Termination:

P (O|λ) =
N∑
i=1

αT i (5.3.19)

Figure 5.8: An illustration of one forward estimate at time t for state j.

The forward estimate is illustrated by Figure 5.8. It should be noted that to calculate

P (O|λ), the likelihood of the observation sequence O occurring given the model, only the

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 101

forward part of the forward-backward algorithm is required. The backward algorithm

does provide significant advantages for helping to solve problem 3, the actual training

of a HMM, and it is therefore beneficial to describe it along with the forward algorithm.

5.3.7.3 The Backward Algorithm

The backward estimate is given by:

1. Initialization:

βT i = 1 1 ≤ i ≤ N (5.3.20)

2. Induction:

βti =
N∑
j=1

AijBj(Ot+1)βt+1j 1 ≤ i ≤ N

T − 1 ≥ t ≥ 1 (5.3.21)

The backward estiamte is illustrated by Figure 5.9.

Figure 5.9: An illustration of one backward estimate at time t for state i.

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 102

5.3.8 The Baum-Welch Algorithm

Solution of the third problem for a Hidden Markov Model (how can the model parameters

λ = (A,B,π) be maximized with respect to O) can be solved using the Baum-Welch

algorithm. When used in conjunction with the forward-backward algorithm, the Baum-

Welch algorithm can be viewed as a classic example of an expectation-maximization

(EM) algorithm. In the expectation (E) step, the forward-backward algorithm is used

to compute the expectation of the log-likelihood using the current estimated values of

the matrices A and B. This is then followed with the maximization (M) step, in which

the Baum-Welch algorithm re-estimates the parameters of A and B by maximizing the

expected log-likelihood function found in the E step. The two steps are then repeated

with the updated values until the algorithm converges.

Baum et al. (1970) proved that, when used in conjunction with the forward-backward

algorithm, their algorithm is guaranteed to either define a critical point of the likelihood

function, P (O|λ) or improve the original estimate of λ so that the new model gives a

greater likelihood of viewing the observation sequence O. Unfortunately, any maxima

found will only be guaranteed to be a local maxima only and in many practical problems,

the optimization surface will be very complex with many local maxima.

The Baum-Welch algorithm works by counting, so that the re-estimation of the state

transitions matrix, Âij , is given by:

Âij =
expected number of transitions from state Si to Sj

expected number of transitions from state Si

=

∑T−1
t=1 αtiAijBj(Ot+1)βt+1j∑T−1

t=1 αtiβti
(5.3.22)

and the re-estimation of the state emissions matrix, B̂ij , is given by:

B̂ij =
expected number of times in state i and observing symbol Vj

expected number of times in state i

=
∑T−1

t=1 1{αtiβti}∑T−1
t=1 αtiβti

(5.3.23)

where 1{·} is the indicator bracket that gives 1 if Ot = j and zero otherwise.

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 103

The re-estimation of π̂i is set as the number of times the model starts in state i at time

t = 1:

π̂i = expected frequency in state Si at time t = 1

=
α1iβ1i∑N
j=1 α1jβ1j

(5.3.24)

An important feature of the re-estimation procedure is that the stochastic constraints

of the HMM parameters are automatically satisfied at each iteration. Therefore the

following holds true:
N∑
j=1

Âij = 1 1 ≤ i ≤ N (5.3.25)

M∑
j=1

B̂ij = 1 1 ≤ i ≤ N (5.3.26)

N∑
i=1

π̂i = 1 (5.3.27)

By computing the forward-backward algorithm followed by the Baum-Welch algorithm

on an observation sequence, not only can an estimation of the states of the model be

calculated, but also importantly, just from the observation sequence, an estimation of the

model itself. An HMM can therefore be trained by initially setting the parameters A,B

and π to normalised random values and then continually running the forward-backward

algorithm followed by the Baum-Welch algorithm until the algorithm converges to a

local maximum. The training algorithm can be considered to have converged at a local

maximum if the change in A and B is less than a pre-determined threshold value. The

training algorithm could also be stopped if it has not converged after a set number of

iterations (e.g. 1000).

Finding a ‘Semi-Optimal’ Starting Position

Advantage can be taken of the observation that many problems quickly come close to

their converged log-likelihood after only a few iterations, as illustrated by Figure 5.10.

This facilitates a ‘semi-optimal’ local maxima to be found by repeatedly instigating a

number of training iterations (e.g. 10) of the forward-backward algorithm followed by

the Baum-Welch re-estimation from different random starting points of A,B and π.

After a number of EM iterations (e.g. 2) each instance of the training algorithm can be

stopped and the full EM training can be performed using the current values of A,B,π

that gave the best log-likelihood value at the end of a number of EM test iterations.

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 104

Figure 5.10: An illustration of the fast approximation of a model’s final converged
log-likelihood value. This Figure shows the log-likelihood error value during the first 10
training iterations of a simple 10 state model. The model was trained using 20 different
random starting points of A and B. After just one iteration it is already clear which
of the 20 training instances will provide the maximal converged log-likelihood (i.e. the

blue line).

Multi-Threaded Training

One major advantage of using the forward-backward/Baum-Welch algorithm as a train-

ing method for an HMM is that each model (i.e. each gesture) can be trained indepen-

dently from the other models. This is of particular use on new machines that feature

multiple processors as a multi-threaded training approach can be adopted in which each

model’s training routine is launched in a separate thread. This training approach greatly

speeds up the overall training time for an HMM classification system as one model does

not need to wait for the previous model to be trained before it can start its own training

routine.

The forward-backward/Baum-Welch algorithm also has one other advantage in that, if

a new gesture is added to an existing trained database or an existing gesture is removed,

the entire database does not need to be retrained. Instead, a new model only needs to be

trained for the new gesture, thus greatly reducing the training time. If an existing gesture

is removed from the database then no training is required as the HMM classification

system simply removes this model from its database. This is not the case for other

machine learning algorithms, such as an Artificial Neural Network, as the entire system

would need to be retrained from scratch any time a new gesture is added or removed.

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 105

5.3.9 Model Types

The previous section on the real-time prediction and training of a Hidden Markov Model

has been described under the assumption that every state can be reached from every

other state within the model in a finite number of steps. This type of model, referred to

as an ergodic model or a fully connected model, may not provide the optimum represen-

tation of the problem being modeled. Instead, other HMM designs have been proposed

that may provide a more appropriate account for the observed properties of the signal

being modeled. One popular model design for the classification of a signal that evolves

over time, such as in a speech or gesture recognition problem, is the left-right model.

This model, also known as a Bakis model, has state transition probabilities that satisfy:

Aij = 0 if j < i (5.3.28)

This does not allow any state transition to a state whose indices are lower than the

current state, forcing the model to either remain in its current state or progress to a

state with a higher (i.e. to the right of) state value than the current state. The left-right

model also has the properties of:

πi =

0, i 6= 1

1, i = 1
(5.3.29)

which forces the model to start in state 1 (i.e. the left-most state) and therefore end in

state N (i.e. the right-most state). The left-right model is illustrated in Figure 5.11,

whereas Figure 5.12 illustrates an ergodic model.

Figure 5.11: An illustration of a 4 state second-order left-right Hidden Markov Model.
The values show the transition probabilities of state i moving to state j. For this

example ∆ = 2.

The number of steps that a model may progress to can also be limited, allowing the

model to only move to its own state or the state directly to its right; for example in a

first order left-right model. This can be useful for gesture recognition for example as it

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 106

stops the model ‘skipping’ out the middle of a gesture by accident. This can be set by:

Aij = 0, if j > i+ ∆ (5.3.30)

where ∆ is the number of steps that a model may progress to during one estimation

update.

One advantage of using the look-up matrices A and B is that, regardless if the model

type is left-right, ergodic or some variation of the two, no modification of the training

or predication process needs to be changed. This is because any state transitions value

initially set to 0 will remain at 0 throughout the re-estimation process.

Figure 5.12: An illustration of a 4 state ergodic Hidden Markov Model. The values
show the transition probabilities of state i moving to state j. Note that a state can

transition back to itself and that the total probabilities for each state sums to 1.

5.3.10 Scaling

For a Hidden Markov Model, one real-world computational factor needs to be taken into

consideration when actually implementing the algorithm. This is related to the recursive

nature of the forward-backward algorithm as, for example, each new value of αt+1j is

obtained by:

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 107

αt+1j =
[N∑
i=1

αtiAij

]
Bj(Ot+1) 1 ≤ j ≤ N

1 ≤ t ≤ T − 1 (5.3.31)

As each of the probability coefficients in A and B are either equal to or less than one,

sometimes significantly less than one, this means that as the algorithm progresses over

t, the values of αt+1j will exponentially decrease towards zero. This will force the

calculation of α to quickly underflow the dynamic range of the computer, even if double

precision floating point is used. The same also holds true for β.

To alleviate this problem, αti and βti can be scaled using a scaling coefficient that is

independent of i but instead depends on t. The key to this is to use the same scaling

factor for β as was used for α at each time t. The scaling of α and β does not need

to be performed at every time-step, but can instead be performed when the values of

either α or β start to approach some pre-set threshold. If scaling is not performed then

the scaling coefficients are set to 1 at that time.

The scaling coefficient, φt at time t can be simply set as the sum over all the states at

αti:

φt =
1∑N

i=1 αti

(5.3.32)

therefore a new forward estimate is given by:

αt+1j =
[N∑
i=1

α̂tiAij

]
Bj(Ot+1) (5.3.33)

with the scaled α̂ti set as:

α̂ti = αtiφt (5.3.34)

as β̂ti, the scaled version of βti, uses the same scaling coefficient it is given by:

β̂ti = βtiφt (5.3.35)

One nice feature of using scaling is that it does not effect the re-estimation equation, as

φ is canceled out of both the numerator and denominator and the original estimation

equation therefore remains. The only real change to the HMM procedure because of the

scaling process is in computing P (O|λ) as the values of α̂T i cannot simply be added

together as they are already scaled. We can, however, make use of the property that

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 108

the unscaled estimates of α at time T combined with all the scaling coefficients give:

T∏
t=1

φt

N∑
i=1

αT i = 1.0 (5.3.36)

therefore
T∏
t=1

φtP (O|λ) = 1.0 (5.3.37)

which can be rearrange to give

P (O|λ) =
1∏T

t=1 φt
(5.3.38)

finally, the log of P (O|λ) can be computed as

log P (O|λ) = −
T∑
t=1

log φt (5.3.39)

Therefore, the log of the likelihood of observing O given the model can be computed,

however the likelihood itself can not as it would be out of the dynamic range of the

computer (Press et al., 2007).

5.3.11 Batch Training

Until now, it has been assumed that the Hidden Markov Model was only being trained

with one observation sequence, O of length T . In many practical problems, however,

a more robust model can be trained by collecting multiple observation sequences, i.e.

record multiple trials of a musician performing a gesture. Training an ergodic model

with multiple observation sequences not only helps to create a more robust estimation

of the parameters, it is also a necessity for the case where the left-right design is being

used. This is because, as the model can only stay in the same state or progress to a

higher state, only a small number of observations will be recorded by each state before

it progresses to the next state. This could cause certain emission probabilities to quickly

head towards zero if only one observation sequence is used, resulting in a poor estimate

of the model’s emissions parameters. Therefore, in order to have sufficient data to make

a reliable estimate of the model parameters, multiple observation sequences are required.

A model can be trained with K observation sequences, O = {O(1),O(2), . . . ,O(K)}
where O(k) = {O(k)

1 ,O(k)
2 , . . . ,O(k)

T }, by making the assumption that each observation

sequence is independent of every other observation sequence. Therefore, as with one

observation sequence, our goal during the training stage is to maximize λ with respect

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 109

to P (O|λ) so that with K observation sequences this becomes:

P (O|λ) =
K∏
k=1

P (O(k)|λ) (5.3.40)

As the Baum-Welch algorithm is essentially based on counting the frequencies of the

occurrence of each event, the re-estimation algorithms can be modified for multiple

observations by adding together the individual frequencies of each observation sequence.

The modified re-estimation of Âij and B̂ij are therefore:

Âij =

∑K
k=1

1
Pk

∑T (k)−1
t=1 α̂

(k)
ti AijBj(O

(k)
t+1)β̂

(k)

t+1j∑K
k=1

1
Pk

∑T (k)−1
t=1 α̂

(k)
ti β̂

(k)

ti

(5.3.41)

B̂ij =

∑K
k=1

1
Pk

∑T (k)−1
t=1 δ(O(k)

t , j)α̂(k)
ti β̂

(k)

ti∑K
k=1

1
Pk

∑T (k)−1
t=1 α̂

(k)
ti β̂

(k)

ti

(5.3.42)

where Pk is given by P (O(k)|λ). Note that, for each of the k observation sequences, the

same scale factors will appear in each term over the summation of t as will appear in Pk
and therefore cancel each other out. Because of this, using the scaled values of α and β

will result in the unscaled re-estimate of Âij . The same holds true for the re-estimation

of B̂ij .

5.3.12 Classification using the HMM Algorithm

Hidden Markov Models can be used for the real-time recognition of temporal musical

gestures by creating and training one model for each of the G gestures that the user wants

the system to recognise. After each of the models have been trained, a new unknown

observation sequence O of length T can be classified using the maximum a-posterior

probability estimate given by:

c = arg max
g

P (O|λg) 1 ≤ g ≤ G (5.3.43)

5.3.13 Calculating the Classification Threshold

To enable a trained HMM to be used for the real-time classification of musical gestures

in a continuous stream of data that may contain null gestures, a classification threshold

value must be calculated for each of the G models in the database. This way, an

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 110

observation sequence will only be classified as the gth gesture if the log-likelihood of the

observation sequence O is greater than or equal to that model’s classification threshold:

ĉ =

c if(P (O|λg) ≥ τg)

0 otherwise
(5.3.44)

τg, the classification threshold for the gth model, can be calculated after each model has

been trained by taking the average log-likelihood prediction value over all the training

data for the gth model plus the standard deviation of the log-likelihood prediction value

over the training data times a user-configurable sensitivity margin, γ. γ can initially

be set to a fixed number of standard deviations (e.g. 2) during the training phase and

later adjusted by the user in the real-time prediction phase until a suitable classifica-

tion/rejection level has been achieved. The classification threshold for the gth model is

therefore given by:

τg = µg − (σgγ) (5.3.45)

where

µg =
1
Kg

Kg∑
i=1

P (O(i)|λg) (5.3.46)

σg =

√√√√ 1
Kg − 1

Kg∑
i=1

(
P (O(i)|λg)− µg

)2

(5.3.47)

where Kg is the number of training examples for the gth gesture.

Using a classification threshold for each model in a HMM classification system provides

the advantage that a null model (like a noise or silence model as used in speech recogni-

tion) is not required. This is an advantage for MCI as it greatly decreases the amount

of time the performer needs to spend in the training phase of the algorithm, as they do

not need to collect the null-gesture training data and the null model does not need to

be trained.

5.3.14 Laplace Smoothing

For the classification of musical gestures, one modification of the HMM training process

is required, especially when the number of training examples for each gesture is small.

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 111

This modification ensures that none of the emission probability coefficients in B are

set to 0. Setting an emission probability to 0 at any stage of the training phase has

two unwanted properties. The first unwanted property is that, once a coefficient is set

to 0, it cannot change regardless of how many examples of that symbol in that state

occur at a later training iteration. The second, and more drastic property of setting an

emissions coefficient to 0, is that the model will produce a zero probability result for

any observation sequence that actually includes a symbol in a state with an emissions

probability of 0.

To alleviate this issue, a form of Laplace Smoothing has been added to the re-estimation

process of B to ensure that none of the emission probability coefficients are set to 0.

Laplace Smoothing, also known as add-one smoothing, is a process commonly used

in many areas of probability where 1.0 is added to the numerator in each probability

estimate, with N added to the denominator to ensure that the estimate is normalised.

This results in any value that would previously have had a zero probability estimate

now having a very small probability instead. At the end of each iteration of the re-

estimation stage, ϑ is added to the re-estimated value of Bij , after which each column

of B is normalised to ensure the stochastic constraints outlined in equation (5.3.25) are

maintained. As each re-estimated probability prior to Laplace Smoothing is less than

1.0, sometimes much less than 1.0, the Laplace Smoothing coefficient, ϑ, was set to to

1.0/M , rather than 1.0 to ensure that any emissions probabilities that are close to 0 do

not gain an unrealistic probability estimate.

The applied form of Laplace Smoothing for the re-estimation of B̂ is therefore given by:

B̂ij =
B̂ij + ϑ∑M
k=1 B̂ik + ϑ

1 ≤ i ≤ N, 1 ≤ j ≤M (5.3.48)

5.4 HMM Experiments on Synthetic Data

Several aspects of the classification abilities of the modified HMM algorithm were tested,

all of which have an interest for the recognition of musical gestures. This included

evaluating the classification abilities of the HMM algorithm with pre-segmented gestures

along with testing the algorithm’s ability to recognise the gestures in a continuous stream

of data that also contained a number of null gestures. Prior to testing the overall

classification abilities of an HMM on the multivariate temporal numbers-shapes data

set described in section 5.2, a number of features of the algorithm with respect to a

set of known synthetic models were first tested. This way, the underlying transition

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 112

and emissions probabilities that generate an observation sequence are known and this

enables the estimation abilities of the HMM to be evaluated.

5.4.1 Evaluation of an HMMs Estimation Abilities

This experiment tested an HMMs ability to correctly estimate A and B with respect

to the number of training examples available. 10 random first-order left-right models,

each with 10 states and 6 symbols, were created and from these η training examples

each with a length of 100 were generated using the hmmgenerate function in Matlab.

η, the number of training examples, ranged from 10 to 1000 in increments of 10. After

the training data for each increment of η had been created, it was loaded by a program

that attempted to train 10 Hidden Markov Models using the forward-backward/Baum-

Welch training routine with the current number of training examples in a maximum of

100 iterations. When each model had reached the maximum number of iterations its

estimated A and B matrices were saved to disk. After all the models had been trained

with each increment of η, the estimated A and B matrices were loaded into Matlab and

the average estimated error was calculated. This error measure was calculated by taking

the average error over all 10 models between the actual value of A that generated the

observation sequences and the estimated value of A, denoted Ā, along with the actual

value of B that generated the observation sequences and the estimated value of B,

denoted B̄, for each increment of η.

The average estimated error for η training examples is therefore given by:

ξη =
1
K

K∑
k=1

aErr(k)
η + bErr(k)

η (5.4.1)

where K = 10 and aErr
(k)
η and bErr

(k)
η are given by:

aErr(k)
η =

N∑
i=1

N∑
j=1

(Aij − Ā(η)
ij)2 (5.4.2)

bErr(k)
η =

N∑
i=1

M∑
j=1

(Bij − B̄(η)
ij)2 (5.4.3)

5.4.1.1 Results & Discussion

Figure 5.13 shows the average estimated error for each increment of η. After calculating

the average estimated error and standard deviation for each value of η, an exponential

curve, with the form of a ∗ xb, was fitted to the average estimated error results. The

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 113

curve was fitted (with 95% confidence bounds) using the coefficients of a = 5.29 and

b = −0.11 with an SSE of 8.44 and RMSE of 0.3. Figure 5.14 shows the derivative of

the fitted line, indicating that the rate of change slows to a minimal change (i.e. has a

gradient of < 1.0e − 4) at 220 training examples. This would therefore suggest that at

least 220 training examples are required to minimise the average estimated error with

the least amount of training examples.

Figure 5.13: The average estimated error for each increment of η. The blue line
shows the standard deviation over each value of k for that increment of η. The yellow
line shows an exponential curve, with the form of a∗xb, fitted to the average estimated
error for each increment of η. The horizontal brown dashed line shows the minimum

change threshold crossing of the fitted line.

Figure 5.14: The derivative of the fitted line and the location of the first minimum
change threshold crossing.

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 114

5.4.2 Evaluation of an HMMs Classification Abilities

This experiment tested an HMMs classification ability with respect to the number of

training iterations the model has been trained with. 10 random first-order left-right

models, each with 10 states and 6 symbols, were created and from these 100 training

examples each with a length of 100 were generated using the hmmgenerate function in

Matlab. 100 test examples were also created, with a length of 100, for each of the 10

models. After the training and test data sets had been generated, they were loaded by

a program that attempted to train 10 HMMs using the training data. This program

used a slightly modified HMM training routine that allowed each model to find the

‘semi-optimum’ starting estimate of the A and B matrices by running 1 iteration of the

training routine from 20 different random initial values. After the ‘semi-optimum’ had

been located for each model, one training iteration was run on the current estimates of

A and B. The training was then stopped and each of the models were tested using the

1000 test examples (100 test examples for each of the 10 models). The Average Correct

Classification Ratio (ACCR) was calculated using equation (5.4.4). The model was

then trained with one more iteration, starting from the previous estimate of A and B

and re-tested. This training and test cycle was repeated from 1 - 1000 training iterations.

The ACCR was calculated using:

1
K

K∑
k=1

Number of correctly classified test gestures
Total number of tested gestures

(5.4.4)

where K is equal to the number of models tested (i.e. 10).

Figure 5.15: The classification results for the first 50 training increments.

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 115

5.4.2.1 Results

Figure 5.15 shows the ACCR results for the first 50 training increments. The results of

this test suggest that the classification abilities of the algorithm are quickly improved in

the first few iterations with the maximum classification result of 87.5% being achieved at

iteration 31. Figure 5.16, which shows the ACCR results for all 1000 training increments,

illustrates that the classification results decrease slightly as the iteration value increases

above 100. A possibly reason for this maybe that the estimates of the A and B matrices

start to over-fit with a large number of training iterations.

5.4.2.2 Discussion

The results of this test suggest that the classification abilities of the HMM algorithm

improve after a small number of iterations, however the classification abilities of the

algorithm do not significantly improve after this point. For the recognition of musical

gestures, it is therefore of beneficial to limit the number of training iterations to, for

example, 10 training iterations as this will still achieve a high recognition result with

the advantage of having the algorithm train quickly.

Figure 5.16: The classification results for all the training increments from 1 - 1000.

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 116

5.5 HMM Experiments on Real Data

Prior to testing the overall classification abilities of a modified Hidden Markov Model

with respect to both pre-segmented data and a continuous stream of data, the parameter

settings of an HMM were first evaluated. These tests, which used the data from just one

participant, evaluated the choice of model that should be used (i.e. ergodic or left-right)

along with the optimal number of states and symbols to use for the recognition of the

gestures contained in the numbers-shapes data set described in section 5.2. The SAX

parameters and γ parameter are also evaluated.

5.5.1 HMM Model Type Evaluation

This experiment tested an HMMs ability to correctly classify the pre-segmented data

from the numbers-shapes data set with respect to the type of model design used. The

pre-segmented data from the first participant was used to run this test with the following

model designs being tested:

• Ergodic Model

• First-Order Left-Right Model

• Second-Order Left-Right Model

For each model design, a 10-state HMM was trained using 10-fold cross-validation. In

each fold, the remaining data not used for training was tested against each model.

The training and test data was quantised using the SAX algorithm, (a = 10, f = 50),

followed by quantisation using the k-means algorithm with the cluster size set to 16.

As the classification abilities of an HMM are based on the model’s ability to estimate

the transition and emissions probabilities for a given gesture and this estimation process

starts from a random position, the test above was repeated 10 times and the overall

cross-validation results were averaged. Repeating this test 10 times provides a good

indication of how stable the overall classification results of each model design are; as a

low standard deviation in the results of each model shows if one model type consistently

outperforms the other model designs.

The Average Cross Validation Ratio (ACVR) was calculated for this test which gave

an indication of the performance of the model, averaged across all of the 10 folds. The

ACVR was calculated using:

1
R

R∑
r=1

1
K

K∑
k=1

Number of correctly classified test gestures in fold k

Total number of tested gestures in fold k
(5.5.1)

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 117

where K is equal to the number of cross-validation folds (i.e. 10) and R is equal to the

number of test repeats (i.e. 10).

Figure 5.17: The ACVR results for each type of model design. The red bars show
the standard deviation over each repeat.

5.5.1.1 Results & Discussion

Figure 5.17 shows the ACVR results for each type of model design. The results from this

test show that both the first and second order left-right models consistently outperform

the ergodic model. The first-order left-right model achieved an ACVR of 91.5% (σ =

1.08%) with the second-order left-right model achieving an ACVR of 90.5% (σ = 1.51%)

and the ergodic model achieving an ACVR of 74.8% (σ = 2.15%). These results are

consistent with those across the literature (Abou-Moustafa et al., 2004), even though

this test has been run on a much smaller data set from one participant. The performance

of the left-right models over that of the ergodic model could possibly be explained by

the phenomenon of Ocham’s razor, where a simple model is favored over a complex one.

This is because the ergodic model has many more parameters, as it has all the possible

state transitions connected. This type of model therefore requires more data to ensure

that the model does not over-fit the training data which results in poor generalization.

The results of this test therefore suggest that a first-order left-right model would be the

most appropriate to use for the classification of the numbers-shapes data set.

5.5.2 HMM Number of States Evaluation

This experiment tested an HMMs ability to correctly classify the pre-segmented data

from the numbers-shapes data set with respect to the number of states used in the

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 118

model design. 10 first-order left-right models, each with 16 symbols were trained using

10-fold cross-validation with the first participant’s numbers-shapes data. The data was

quantised using the SAX algorithm, with an a size of 10 and a f size of 50, followed by

quantisation using the k-means algorithm with the cluster size set to 16. Each K-fold

cross-validation iteration was trained with N , the number of states, set from 2 through

30, at the end of which the cross-validation result was calculated and saved. As the

standard deviation in the ACVR results of the model design test for the first-order left-

right was very low (σ = 1.08%), the cross-validation value for this test will only be run

once, rather than repeating the test 10 times.

Figure 5.18: The ACVR results for each increment of N .

5.5.2.1 Results & Discussion

Figure 5.18 shows the cross-validation results for each increment of N . The maximum

cross-validation value of 92.5% occurred with the number of states set to 2, 5 and 9 with

the minimum cross-validation value of 85% occurring with the number of states set to 25.

The mean cross-validation value over all the iterations of N was 89.62% with a standard

deviation of 1.87%. These results suggest that the number of states parameter should be

limited to, for example, 10 states as the classification ability of the algorithm decreases

beyond this value. The reason for the drop in the cross-validation result maybe due to

the increase in model complexity as the number of states increases. The results of this

test therefore suggest that the optimal number of states to use for the recognition of

the numbers-shapes data set is 2. This value should achieve the maximum classification

result, while at the same time using the minimum number of states which reduces the

overall complexity of the model. The following tests will therefore use 2 states.

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 119

5.5.3 HMM Number of Symbols Evaluation

This experiment tested an HMMs ability to correctly classify the pre-segmented data

from the numbers-shapes data set with respect to the number of symbols used in the

model design. As the number of symbols must match the number of quantisation values

used in the k-means algorithm, this test also evaluates the most appropriate cluster size

to use for the recognition of the numbers-shapes gestures. 10 first-order left-right models,

each with 2 states were trained using 10-fold cross-validation with the first participant’s

numbers-shapes data. The data was quantised using the SAX algorithm, (a = 10, f =

50), followed by quantisation using the k-means algorithm. Each K-fold cross-validation

iteration was trained with M , the number of states and also the number of clusters in

the k-means algorithm, set in powers of 2 ranging from 2 to 1024. At the end of each

fold the cross-validation results were calculated and saved.

Figure 5.19: The cross-validation results for each increment of M .

5.5.3.1 Results & Discussion

Figure 5.19 shows the cross-validation results for each increment of M . This test shows

that the number of symbols (and therefore the number of clusters used in the k-means

algorithm) does have a significant effect on the classification abilities of the HMM al-

gorithm. Using only 2 symbols, the cross-validation value was only 26.5%, this value

significantly improved with each increase in the number of symbols up to a maximum

cross-validation value of 92% with 64 symbols. After a symbol size of 128 the cross-

validation value started to decrease which may suggest that not enough training data

was available and the models started to over-fit with a large symbol size. A satisfactory

classification value of 89.5% was achieved with just 16 symbols, just 1.5% less than the

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 120

maximum classification value with 64 symbols, which suggests that a symbol size of 16

would achieve a good compromise between a high classification result while at the same

time reducing the overall complexity of the model. A symbol size of 16 will therefore be

used to test the main numbers-shapes data set.

5.5.4 Evaluation of the SAX Alphabet Size

This experiment tested an HMMs ability to correctly classify the pre-segmented data

from the numbers-shapes data set with respect to the SAX alphabet size parameter.

10 first-order left-right models, each with 2 states and 16 symbols were trained using

10-fold cross-validation with the first participant’s numbers-shapes data. The data was

quantised using the SAX algorithm, with an a size ranging from 2 through 20 in in-

crements of 2 and a f size of 50, followed by quantisation using the k-means algorithm

with the cluster size set to 16. At the end of each fold the cross-validation accuracy was

calculated and saved.

5.5.4.1 Results & Discussion

Figure 5.20 shows the cross-validation results for each increment of a. The results of

this test suggest that a SAX alphabet size of 14 should provide the highest classification

results. In this test, an alpha size of 14 achieved a cross-validation accuracy of 93.5%,

with the minimum cross-validation result of 70% being achieved with just 2 states. A

SAX alphabet size of 14 will therefore be used to test the main numbers-shapes data

set.

Figure 5.20: The cross-validation results for each increment of a.

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 121

5.5.5 Evaluation of the SAX Frame Size

This experiment tested an HMMs ability to correctly classify the pre-segmented data

from the numbers-shapes data set with respect to the SAX frame size parameter. 10

first-order left-right models, each with 2 states and 16 symbols were trained using 10-

fold cross-validation with the first participant’s numbers-shapes data. The data was

quantised using the SAX algorithm, with an a size of 14 and a f size ranging from 10

to 100 in increments of 10, followed by quantisation using the k-means algorithm with

the cluster size set to 16. At the end of each fold the cross-validation accuracy was

calculated and saved.

5.5.5.1 Results & Discussion

Figure 5.21 shows the cross-validation results for each increment of f . The results of

this test suggest that the size of the SAX frame size does not have a major impact on

the overall classification abilities of the algorithm. A classification result of > 89% was

achieved for all of the frame sizes tested, with the minimum cross-validation result of

89.1% occurring with a f size of 90 and the maximum cross-validation result of 91.39%

occurring with a f size of 100. Figure 5.21 shows the cross-validation results for each

increment of f from 10 - 100. A SAX frame size of 50 will therefore be used to test the

main numbers-shapes data set, as this provided a compromise between a good result of

92.09% (just 1.19% below the maximum classification result) and a large enough frame

size which helps reduce the overall computation time of the algorithm.

Figure 5.21: The cross-validation results for each increment of f .

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 122

Figure 5.22: The cross-validation classification results for each of the 10 participants.
The ACVR is shown by the red horizontal dashed line.

5.5.6 Evaluation of an HMMs Classification Abilities With Pre-Segmented

Data

This experiment tested an HMMs ability to correctly classify the pre-segmented data

from the numbers-shapes data set. For each of the 10 participants, 10 left-right first-

order models, with 2 states and 16 symbols, were trained using 10-fold cross-validation.

In each fold, the remaining data not used for training was tested against each model. A

correct classification result was considered if the correct class label was predicted by the

HMM (i.e. if the kth model gave the maximum log-likelihood value and this value was

greater than the kth model’s classification threshold). γ, the coefficient that controls the

number of standard deviations to use for the classification threshold for each gesture,

was set to 2.0. SAX and k-means clustering were used for quantising the data with each

segmented gesture being split into 50 frames with the SAX alpha size set at 14 and 16

clusters were used for the k-means algorithm.

5.5.6.1 Results

The average cross-validation classification result across all 10 participants was 87.53%

with a standard deviation of 4.51%. Participant 7 achieved the maximum cross-validation

classification result with 91.74% and participant 8 achieved the minimum cross-validation

classification result with 77.43%. Figure 5.22 shows the cross-validation results for each

of the 10 participants. Table 5.1 shows the confusion matrix for each of the 10 gestures

(summed over each round of cross-validation).

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 123

Gesture G 0 G 1 G 2 G 3 G 4 G 5 G 6 G 7 G 8 G 9 G 10
G 0 0 0 0 0 0 0 0 0 0 0 0
G 1 42 599 8 6 0 3 9 0 19 0 14
G 2 47 2 605 20 12 2 9 0 1 0 2
G 3 63 0 25 540 0 4 16 2 0 0 0
G 4 33 0 2 0 661 2 0 0 1 1 0
G 5 51 0 0 10 0 627 2 0 0 0 0
G 6 82 6 17 6 0 0 572 17 0 0 0
G 7 63 7 1 4 0 2 26 574 2 21 0
G 8 72 6 1 4 0 0 0 3 593 11 0
G 9 30 1 1 0 0 0 1 8 11 628 0
G 10 40 9 2 1 0 1 1 0 0 0 646

Table 5.1: The confusion matrix across all 10 participants for each of the 10 gestures.
G 0 represents the null gesture.

5.5.6.2 Discussion

This test showed that the HMM provided a moderate classification result across the 10

participants, with the algorithm achieving an average classification result of over 80%

for 9 of the 10 participants, 6 of which achieved over 90%. Table 5.1 shows the confusion

matrix, summed over all 10 participants for the 10 gestures. The confusion matrix shows

that the majority of classification errors made (523 out of 865 = 60%) occurred when a

gesture was classified as a null gesture (with ID 0). The miss-classification of a gesture as

another gesture, rather than a null gesture, only made up a small percentage of the total

classification errors. It should be noted that, for the majority of cases, simply lowering

the classification threshold for each gesture would not have corrected those examples that

were misclassified as a null gesture. This is because a large majority of the incorrectly

classified gestures had an extremely low log-likelihood prediction value and therefore

lowering the classification threshold would not have corrected these classification errors.

A possible explanation for these extremely low prediction values is that the HMM had

over-fitted and simply required a larger training data set to create a more robust model.

5.5.7 Evaluation of a HMMs Classification Abilities With Continuous

Data

This experiment tested an HMMs ability to correctly classify data from the numbers-

shapes data set in a continuous stream of data that also contains a number of null

gestures. This evaluates two important aspects of a Hidden Markov Model for the

recognition of multivariate temporal gestures. Namely the algorithm’s ability to cor-

rectly classify a set of temporal gestures from a continuous stream of data and also

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 124

the algorithm’s ability to reject any null gesture that is not contained in the model’s

database.

For each of the 10 participants, 10 left-right second-order models were trained using

10 randomly selected training examples from each of the 10 gestures. SAX and k-

means clustering were used for quantising the data with each segmented gesture being

split into 50 frames with the SAX alpha size set at 10 and 16 clusters were used for

the k-means algorithm. After the models had been trained they were tested using a

continuous stream of data. The continuous stream of data originated from the data

collection phase of the numbers-gestures database and contained all of the data from

each participant’s recording. The continuous stream, therefore, contained not only each

trial the 10 gestures the participant performed but also, importantly, the participant’s

movements in between each trial along with periods of rest.

The continuous stream was tested by running a sliding window of size w over the data

stream in increments of 10. For each participant, w was set as the average window

size of the 10 randomly selected training examples from each of the 10 gestures. The

mean average window size across all 10 participants was 310 with the minimum average

window size of 251 and the maximum average window size of 389. At each increment,

the data within the sliding window was quantised using SAX and k-means quantisation

with the same settings as used in the training phase. The gesture zone tag within the

data was used to evaluate if the HMM had made the correct classification for each

window of data. As some windows may cover a section of data that contains half a

gesture and noise, the maximum class ID value contained in the gesture zone tag data

was used as the gesture ID for that window of data. A correct classification result

was considered if the correct class label was predicted by the HMM (i.e. if the kth

model gave the maximum log-likelihood value and this value was greater than the kth

model’s classification threshold). The classification threshold for the kth model was set

to average log-likelihood predication value over all the training examples for the kth

class plus 2 standard deviations. The following classification errors were evaluated for

this experiment: ACCR, APR, ARR and ANRR.

5.5.7.1 Results

The ACCR for all 10 participants was 44.80% with a standard deviation of 6.95%.

Figure 5.23 shows the ACCR results for all 10 participants. Participant 10 achieved

the maximum ACCR value of 53.58% with participant 9 achieving the minimum ACCR

value of 30.89%. Table 5.2 shows the APR and ARR values for each of the 10 gestures,

averaged over the 10 participants. The APR and ARR results show that the majority of

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 125

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
APR 0.67 0.42 0.52 0.71 0.67 0.58 0.68 0.74 0.62 0.79
ARR 0.32 0.24 0.32 0.44 0.26 0.18 0.60 0.37 0.40 0.46

Table 5.2: The average precision and average recall for each gesture.

classification errors occurred, not from the misclassification of one gesture with another,

but with the misclassification of a gesture as a null gesture. The ANRR value of 0.65

shows that the HMM model was able to correctly classify a null gesture 65% of the total

number of analysis windows.

5.5.7.2 Discussion

These results show that, although the HMM can correctly classify the same gestures with

the same settings when the gestures are pre-segmented, it can not classify the gestures

with the same accuracy from a continuous stream of data. This presents a problem

for the real-time recognition of musical gestures from a continuous stream of data, for

example, during a live performance, as the performer could not rely on the system to

automatically classify a gesture with any great accuracy. Instead, the performer would

need to manually instruct the computer that they have just performed a gesture by, for

example, pressing a foot-switch at the start and end of the gesture. The system could

then take this segment of data and classify it against one of the gestures in its trained

database.

Figure 5.23: The classification accuracy for each participant. The red line indicates
the overall ACCR.

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 126

5.5.8 HMM Summary

Hidden Markov Models have been used frequently across a wide range of fields to solve

the problem of classifying temporally variable signals. In this chapter the following

modifications have been made to the standard HMM algorithm to optimize it for the

recognition of musical gestures with a limited number of training examples:

1. Applied Symbolic Aggregate Approximation along with k-means clustering as a

quantisation method for high dimensional data

2. Added a multi-instance training routine to start the full training routine with a

‘semi-optimal’ local maxima

3. Used the reciprocal of M as a form of Laplace Smoothing to stop any emissions

probabilities values being set to 0

4. Added a user-configurable threshold classification value for each gesture, thus al-

leviating the need for training a null gesture model

5. Adopted a multi-threaded training approach for each gesture to minimise the total

training time of the algorithm

The experiments conducted on both synthetic and real data in sections 5.4 - 5.5.7 have

shown that HMMs are not particularly suitable for the real-time recognition of musical

gestures as:

1. They need a large amount of training data for each gesture in order to build a

robust model

2. Even when a multi-threaded training routine is adopted, they take a long time to

train. This is because a vector quantisation algorithm also needs to be trained

along with the HMM model itself

3. They perform poorly in classifying a number of gestures from a real-time contin-

uous stream of data

Chapter 5. Recognition of Multivariate Temporal Musical Gestures 127

5.6 Summary

This chapter has addressed the recognition of multivariate temporal musical gestures.

The challenges of recognising a temporal gesture, as opposed to a static posture, were

first outlined. This was followed by a description of the numbers-shapes data set. The

Hidden Markov Model algorithm was then presented along with a description of how the

standard HMM algorithm has been updated for the recognition of multivariate temporal

musical gestures. The chapter was concluded with a number of experiments designed

to evaluate the classification abilities of the HMM algorithm, showing that HMMs are

not particularly suitable for the real-time recognition of musical gestures (as they take a

long time to train and perform poorly in classifying a number of multivariate temporal

gestures from a real-time continuous stream of data). This presents a major problem for

a musical gesture recognition system because a performer would not only need to wait

a long time while their system trains itself, but the performer would also be constrained

to use a trigger key or alternative approach to inform the algorithm that a gesture had

just been made. In the next chapter an alternative powerful machine learning algorithm,

called Support Vector Machines (SVM), is investigated and the algorithm is evaluated

to determine if it can be applied for the recognition of multivariate temporal gestures.

The results of the forthcoming analysis show how the SVM algorithm outperforms the

HMM algorithm in terms of both training speed and classification accuracy.

Chapter 6

Support Vector Machines

Imagination will often carry us to worlds that never were.

But without it we go nowhere.

Carl Sagan

The previous chapter described how a Hidden Markov Model could be applied to classify

multivariate temporal gestures. Although the HMM algorithm achieved a moderate

recognition rate of 87% on the pre-segmented data from the numbers-shapes data set,

it was deemed unsuitable for the classification of musical gestures because it failed to

recognise the same gestures from a continuous stream of data and also took a long time

to train. This chapter investigates how a powerful machine learning algorithm called

Support Vector Machines (SVM) can be applied for the recognition of multivariate

temporal gestures. This chapter shows how a number of feature extraction algorithms

have been specifically applied to represent multivariate temporal gestures and how the

SVM has been adapted to classify gestures from a continuous stream of data. The

chapter is concluded with a number of experiments designed to evaluate the multivariate

temporal classification abilities of the SVM using the numbers-shapes data set.

6.1 Support Vector Machines

Support Vector Machines (SVM) are a set of related supervised learning methods used

for classification and regression (the regression version of the SVM is known as Sup-

port Vector Regression). SVM were originally formulated for two-class classification

problems, and have quickly been accepted as a powerful tool for developing pattern

classification and function approximation systems. One of the key properties of the

128

Chapter 6. Support Vector Machines 129

SVM is that the determination of the model parameters corresponds to a convex op-

timisation problem, and so, unlike an Artificial Neural Network, any local solution is

also a global optimum (Bishop, 2006). This chapter describes how the SVM algorithm

has been modified to optimize it for the recognition of musical gestures, which involves

adding a thresholding function to reject null gestures. Prior to describing this, a general

overview of the algorithm will first be presented, the interested reader can find a detailed

description of the algorithm in Abe (2005), Bishop (2006) and Burges (1998).

(a) Non-convex Optimisation Problem (b) Convex Optimisation Problem

Figure 6.1: SVMs are a Convex Optimisation Problem and therefore any local minima
is also a global minima.

6.1.1 SVM

The core concept of the Support Vector Machine is based on finding a line through the

feature space x that best separates the two classes of data (for now a simple two-class

problem will be considered, however a number of approaches exist to extend the SVM to

G classes). This is illustrated by Figure 6.2, which shows a two-class, linearly separable,

classification problem. Clearly there could be multiple solutions for the location of

this separating line, or hyperplane, with the most intuitive solution being to place the

separating hyperplane so that the distance between it and any of the data points is

maximized. Assuming that the supporting hyperplanes D(x) = −1 and D(x) = 1

include at least one training datum, the hyperplane D(x) = 0 has the maximum margin

(as indicated in Figure 6.2(b)). The region {−1 ≤ D(x) ≤ 1} is then the generalisation

region for the decision function. The generalisation ability of a hyperplane therefore

depends on the location of the hyperplane, and the hyperplane with the maximum

margin is called the optimal separating hyperplane.

By defining the optimal separating hyperplane between these two data clusters, an

unknown datum can be classified by projecting it into the feature space x and calculating

which side of the hyperplane it falls on. The decision function, if the data is linearly

separable, is therefore:

Chapter 6. Support Vector Machines 130

(a) Blue hyperplane = poor solution, red hyperplane
= optimal solution

(b) Optimal separating hyperplane and the maximum
margin

Figure 6.2: Two-class linearly separable classification example.

D(x) = wᵀx + b (6.1.1)

where w is a N -dimensional vector and b is a bias term. The unknown datum x can

then be classified as Class 1 or 2 using:

wᵀx + b

≥ 1, for yi = 1,

≤ −1, for yi = −1.
(6.1.2)

Here, 1 and -1 on the right-hand sides of the inequalities can be a constant a(> 0)

and −a respectively. The original inequalities in (6.1.2) can be maintained simply by

dividing by a. One key concept of locating the optimal hyperplane is that, once it has

been found, only the training examples that lie on the hyperplanes D(x) = −1 and

D(x) = 1 are required. These training examples are known as the support vectors.

Using the support vectors the decision function is given by:

D(x) =
∑
i∈S

αi yi w
ᵀ
i x + b, (6.1.3)

where S is the set of support vector indices, wᵀ
i is the ith support vector, αi are the

nonnegative Lagrange multipliers that help transform the constrained problem into an

unconstrained problem and b is given by:

b =
1
|S|
∑
i∈S

(yi −wᵀxi). (6.1.4)

Chapter 6. Support Vector Machines 131

Using equation (6.1.3) an unknown datum x is classified into:Class 1, if D(x) > 0,

Class 2, if D(x) < 0.
(6.1.5)

If D(x) = 0, x is on the boundary and is therefore unclassifiable. It is using this

simplified example that a support vector machine functions. The interested reader can

find a detailed description of how the SVM algorithm determines the optimal separating

hyperplane in Abe (2005).

6.1.2 Mapping to a High-Dimensional Space

In a support vector machine the optimal hyperplane is determined to maximize the

generalization ability. However, if the training data are not linearly separable, the

obtained classifier may not have high generalization ability, even if the hyperplanes are

determined optimally. Thus to enhance linear separability, the original input space

is mapped into a high-dimensional dot-product space called the feature space. This

mapping is performed using a kernel function. It is this mapping of a non-linear problem

in the original data space to a linearly separable problem in a higher dimensional feature

space that gives the SVM such power as a classification algorithm for complex real-world

data sets. One of the key advantages of using a kernel function for mapping the data

to a high-dimensional (and sometimes even infinite-dimensional) feature space is that

the feature space does not need to be treated explicitly. This technique is known as

the kernel trick and it enables the algorithm to use any kernel that satisfies Mercer’s

condition as a legitimate mapping function.

(a) A 1-dimensional linearly inseparable classification
problem

(b) Mapping the data into a new, 2-dimensional feature
space to make the data linearly separable. This was
achieved using a RBF kernel

Figure 6.3: Mapping the original input space into a higher-dimensional feature space.

Chapter 6. Support Vector Machines 132

Examples of commonly used SVM kernel functions are:

• Linear Kernel: If a classification problem is linearly separable in the input space

then it does not need to be mapped into a high-dimensional space. In such a case

the linear kernel is used:

H(x,x′) = xᵀx′. (6.1.6)

• Polynomial Kernel: The polynomial kernel with degree d, where d is a natural

number is given by:

H(x, x′) = (xᵀx′ + 1)d. (6.1.7)

• Radial Basis Function (RBF) Kernel: The RBF kernel is given by:

H(x,x′) = exp(−γ||x− x′||2), (6.1.8)

where γ is a positive parameter for controlling the radius.

6.1.3 Using Probabilistic Outputs For A Classification Threshold

One disadvantage with the common SVM is that the output from the algorithm is a

discrete prediction value representing the label of the most likely class. The problem

with this version of the algorithm is that there is no way of knowing how likely this label

is. Thankfully, Platt (1999) presented an extension of the SVM algorithm that enables

the output of a calibrated posterior probability value along with the label of the most

likely class. Platt’s algorithm approximates the posterior probability of class k occurring

given x using the sigmoid function:

P (k = 1|x) ≈ PA,B(f) ≡ 1
1 + exp(Af +B)

(6.1.9)

where f = f(x) and A and B are two parameters that control the sigmoid function

with A controlling the curvature of the sigmoid function and B controlling where the

center of the function sits in relation to the x axis. Platt proposed an initial algorithm

to determine A and B which was later improved by Lin et al. (2007). One of the key

factors of this algorithm is that the SVM is trained as normal, with the parameter values

required for the posterior probabilities being calculated on the sparse SVM model after

it has been trained. This therefore ensures that a sparse model is maintained.

The posterior probability estimate, given by the sigmoid function, can therefore be used

as a method to enable the SVM algorithm to reject a null gesture. As a sigmoid function

is used, the threshold value required to reject a null gesture can simply be set to 0.5. If

Chapter 6. Support Vector Machines 133

Figure 6.4: An illustration of the sigmoid function with three values for A set at 0.5,
1, 2 and 2 and the values for B set as 0, 0, 0 and 2.

the performer finds that some gestures are still being rejected then they can manually

adjust this threshold value until a satisfactory compromise between the rejection of

gestures and classification of false positives has been reached. Figure 6.5 illustrates the

processing chain for the SVM algorithm.

Figure 6.5: The processing chain for the SVM algorithm.

6.1.4 Using SVM to Classify Multivariate Temporal Data

Support Vector Machines, with their non-linear kernels and convex optimisation prob-

lems, present a formidable classification tool. SVM have one disadvantage however, in

that N , the length of their input vector x, needs to be a pre-determined fixed length.

This means that the raw-data cannot be used as input to the SVM, as any temporal vari-

ation in the data will corrupt the correct classification of the input signal. It is therefore

necessary to compute a number of features that best represent the multivariate temporal

signal and use these features to create the SVM’s input vector.

Chapter 6. Support Vector Machines 134

Signal A Signal B
µ σ ||x|| µ σ ||x||

-0.569 0.999 31.603 -0.569 0.999 31.603

Table 6.1: Mean, Standard Deviation and Euclidean Norm of Signal A and B.

It is in choosing which features of the data to extract that ‘makes-or-breaks’ a machine

learning algorithm; as features that do not describe the underlying problem well will

result in poorly trained classification models. For temporal signals, features that express

how the data is changing over the length of the captured time window should be used.

To avoid the curse of dimensionality, feature extraction for a N -dimensional temporal

signal was resolved by individually extracting the features for each dimension of data

and then concatenating the features from each dimension into one single main feature

vector. This feature vector was then used as input to the SVM algorithm for training

and classification.

The classification abilities of the modified SVM algorithm were evaluated using the

numbers-shapes data set with both segmented data and data in a continuous stream.

Prior to presenting the results of these evaluations, the feature extraction methods used

as input to the SVM algorithm will first be described.

6.1.5 Time Domain Features

A number of standard statistical features were calculated for each dimension of the

multivariate time-series x. These consisted of the mean (µ), standard deviation (σ),

Euclidean norm (||x||) and root mean squared (RMS) value of x. These are useful

statistical features, however, they all have one common drawback in that they do not

describe well how a temporal signal is changing over time. Figure 6.6 illustrates this,

showing two very different signals, signal b is the reverse of signal a. Despite the fact

that these signals are clearly different, they still have the same mean, standard deviation

and Euclidean norm, as indicated by table 6.1.

This problem was solved by segmenting the temporal signal into an equal number of

frames and computing the mean, standard deviation, Euclidean norm and RMS value

of each frame. The number of frames is given by Nf and the number of samples in each

frame is given by |x|/Nf . Increasing Nf will result in a more precise analysis, however,

it will also increase the length of the input feature vector to the machine learning model

and may therefore increase the complexity of the learning task. For the classification of

the number-shapes data set, Nf was empirically set to 10.

Chapter 6. Support Vector Machines 135

(a) Two different temporal signals (b) The time series segmented into 10 frames

Figure 6.6: Two different temporal signals with the same mean, standard deviation
and Euclidean norm.

Signal A Signal B
Frame µ σ ||x|| µ σ ||x||

1 -0.558 0.136 5.747 -0.005 0.180 1.801
2 -1.340 0.280 13.694 1.084 0.419 11.619
3 -1.515 0.298 15.442 1.805 0.177 18.145
4 0.008 0.405 4.032 0.450 0.463 6.447
5 0.269 0.165 3.161 -0.198 0.068 2.102
6 -0.198 0.068 2.102 0.269 0.165 3.161
7 0.450 0.463 6.4477 0.008 0.405 4.032
8 1.805 0.177 18.145 -1.515 0.298 15.442
9 1.084 0.419 11.619 -1.340 0.280 13.694
10 -0.005 0.180 1.801 -0.558 0.136 5.747

Table 6.2: The mean, standard deviation and Euclidean norm of Signal A and B (as
shown in Figure 6.6), segmented into 10 frames.

6.1.6 Frequency Domain Features

Appropriate temporal features can also be extracted from the frequency domain along

with the time domain features presented previously. By using a transform function,

such as the Fourier transform or the Discrete Wavelet transform, a time series can be

converted from the time domain to its representation in the frequency domain. After

a time series has been converted to the frequency domain, a number of features can be

found such as:

The bin index of the signal’s maximum frequency:

Υm = arg max
i

θi (6.1.10)

The amplitude of the maximum frequency:

Υma = max θi (6.1.11)

Chapter 6. Support Vector Machines 136

The ratio between the maximum frequencies amplitude and the mean of the spectrum:

Υmr =
Pma∑n
i=1 θi

(6.1.12)

The top c Fourier coefficients:

Υcoeff i
= θi for 1 ≤ i ≤ c (6.1.13)

The phase value at the maximum frequency:

Υω = ϕPmax (6.1.14)

The Euclidean norm of the phase:

Υ||ω|| =

√√√√ n∑
i=1

ϕ2
i (6.1.15)

where θ and ϕ are the magnitude and phase vectors output from the FFT and n is

the FFT’s window size. These frequency domain features are commonly used in vari-

ous domains throughout the machine learning literature, such as in speech recognition

(Rabiner, 1989) and the recognition of hand gestures captured by an EMG sensor (Kim

et al., 2008).

6.2 SVM Experiments

Three experiments were run to validate the classification abilities of the modified SVM

algorithm. The first experiment evaluated the classification abilities of the SVM algo-

rithm with the pre-segmented gestures from the numbers-shapes data set (see chapter

5.2). The second experiment evaluated the classification abilities of the SVM algorithm

with respect to a minimal amount of training data. Finally, the third experiment tested

the SVM algorithm’s ability to correctly classify data from the numbers-shapes data

set in a continuous stream of data that also contained a number of null gestures. The

LIB-SVM (Chang and Lin, 2001) library was used to implement the SVM classifier for

all three experiments. A RBF kernel function was used to map the input data into a

linearly separable feature space for all three experiments.

Chapter 6. Support Vector Machines 137

6.2.1 SVM Experiment A

This experiment tested the SVM algorithm’s ability to correctly classify the pre-segmented

data from the numbers-shapes data set. For each participant, a SVM model was trained

using 10-fold cross-validation. In each fold, the remaining data not used for training was

tested against the model, with the average cross-validation ratio being computed at the

end of each test for all 10 participants.

This test was run using three sets of feature data:

1. Time Domain Features (TD)

2. Frequency Domain Features (FD)

3. Combined Time Domain and Frequency Domain Features (TDFD)

The TD features consisted of the mean, standard deviation, Euclidean norm and RMS

value for each dimension of data. Each dimension of data was segmented into 10 frames,

giving the total number of TD features per training/testing example to 120 (4 features

x 10 frames x 3 dimensions). The FD features consisted of the six features given by

equations (6.1.10) through (6.1.15) for each dimension of data, with c, the top Fourier

coefficients, set at 10 and the FFT window size set at 512. Giving the total number of

FD features to 45 (15 features x 3 dimensions). The combined TDFD feature vector

therefore consisted of 165 features per training/testing example (120 TD and 45 FD).

6.2.1.1 Results

Table 6.3 shows the ACVR results across all 10 participants for the three conditions,

with each condition being run with scaling off and scaling on. With scaling on, all three

conditions achieved excellent classification results, with the TD and TDFD conditions

both achieving an ACVR value of 99.28%. The FD condition achieved an ACVR value

of 97.8%. The results were significantly reduced without scaling the data prior to both

training and testing the SVM, with the TD achieving the best ACVR value of 50.34%

and the FD and TDFD both achieving the poorest ACVR value of just 24.44%. Figure

6.7 shows the cross-validation results for each particpant for the TD condition with

scaling on. For this condition the SVM algorithm achieved an excellent cross-validation

result of 98% or higher for all the participants, with the exception of participant 8 for

which the algorithm achieved a cross-validation result of 96.4%. The SVM algorithm

achieved a 100% recognition rate for participants 1, 5, 6 and 10.

Chapter 6. Support Vector Machines 138

Figure 6.7: The cross-validation results for each of the participants (blue) and the
overall mean ACVR (dashed red line).

6.2.1.2 Discussion

These results show that the SVM achieves excellent classification results of multivariate

temporal data with both features computed in the time domain and features computed in

the frequency domain. The TD features slightly outperformed the FD features, achieving

very close to a perfect classification result. It is interesting to see that the classification

results did not improve when the TD and FD features were combined, suggesting that

the FD features are not orthogonal to the TD features. These results suggest that the

segmented statistical time domain features are an excellent feature extraction method

for multivariate temporal recognition. The time domain features not only provide a

high classification result, but are also less computationally demanding to calculate than

the frequency domain features. The TD features will therefore be used in the next

two experiments which evaluate the classification abilities of the SVM algorithm with

respect to a minimal amount of training data and the algorithm’s ability to classify the

numbers-shapes gestures in a continuous stream of data.

TD FD TDFD
Scaling ACVR σ ACVR σ ACVR σ

Off 50.34 17.07 27.44 8 27.44 8
On 99.28 1.1 97.8 3.03 99.28 1.08

Table 6.3: The results for each of the three conditions, showing the ACVR and
standard deviation.

Chapter 6. Support Vector Machines 139

6.2.2 SVM Experiment B

This experiment tested the classification abilities of the SVM algorithm with respect to

a minimal amount of training data. This is an important test for MCI as, if a model

can achieve as good a classification result with 5 training examples as it can with 50

training examples, then a performer can save time in both collecting the training data

and also in training the model.

For each participant, a Support Vector Machine was trained using η randomly selected

training examples from each of the 10 gestures and tested with the remaining data.

The SVM was trained using the same settings used in 6.2.1, with time domain features

being used as the input to the SVM. η ranged from 3 - 20, starting at 3 as opposed to

1 because at least 3 training examples are required to estimate the threshold value for

each template and stopping at 20 to allow at least 5 test examples per trial. To ensure

that the results of this test were not weighted by a ‘lucky’ random selection of the best

template from the 25 training samples of each gesture, each test for η was repeated 10

times and the average correct classification ratio was recorded.

6.2.2.1 Results & Discussion

Figure 6.8 shows the ACCR values for each iteration of η. This test showed that the

number of training examples significantly effects the classification abilities of the SVM

algorithm. With just 3 training examples the SVM only achieved an ACCR value

of 3.61%. At 10 training examples the SVM achieved a practical recognition result

of 86.67%, however the standard deviation across all 10 participants was still high at

13.35%. With 13 training examples the SVM reached an excellent ACCR value of 95.3%

with a moderate standard deviation of 6.81%. Using 20 training examples, the SVM

achieved 97.76% with a very small standard deviation of 1.84%. The results of this test

suggest that at least 11 training examples are required per-gesture if the user wants to

achieve a robust classification result of > 90%.

6.2.3 SVM Experiment C

This experiment tested the SVM’s ability to correctly classify data from the numbers-

shapes data set in a continuous stream of data that also contains a number of null

gestures. This evaluated two important aspects of the SVM algorithm for the recognition

of multivariate temporal gestures. Namely the algorithm’s ability to correctly classify

a set of temporal gestures from a continuous stream of data and also the algorithm’s

ability to reject any null gesture that is not contained in the model’s database.

Chapter 6. Support Vector Machines 140

Figure 6.8: The ACCR values averaged across all 10 participants for each iteration of
η. The horizontal blue line indicates the minimal training examples required to achieve

a classification result of > 90%.

For each participant, a SVM model was trained using 10 randomly selected training

examples from each of the 10 gestures. After each model had been trained it was

tested using a continuous stream of data. The continuous stream of data originated

from the data-collection phase of the numbers-shapes database and contained all of the

participant’s trial recordings. The continuous stream, therefore, contained not only all

of the 25 gestures the participant performed (10 of which where used to train the model)

but also, importantly, the participant’s movements in between each trial along with the

periods of rest.

The continuous stream was tested by running a sliding window of size w over the data

stream in increments of 5. The window size, w, was individually calculated for each

participant by taking the average length of the training examples across the 10 gestures

for that participant. For the majority of the participants, w was 306, with the shortest

average window length of 250 and the longest average window length of 375. At each

increment, the data within the window was given to the SVM model for classification.

The gesture zone tag within the data was used to evaluate whether the SVM model

had made the correct classification for each window of data. A correct classification

result was considered if the correct class label was predicated by the SVM model (i.e. if

the kth gesture gave the highest estimated probability and this probability was greater

than 0.5). The following classification errors were evaluated for this experiment: ACCR,

APR, ARR and ANRR.

Chapter 6. Support Vector Machines 141

6.2.3.1 Results

Figures 6.9 - 6.11 show the ACCR, APR and ARR results respectively. The SVM

achieved a poor ACCR value of 38.33% (σ = 10.67%). Participant 7 achieved the

maximum ACCR value of 52.34% with participant 9 achieving the minimum ACCR

value of 22.34%. The APR and ARR values, which can be viewed in Figures 6.10 and

6.11 respectively, indicate that the SVM had a higher precision ratio than recall ratio.

This shows that the SVM made the majority of classification errors by misclassifying

gesture i as a null gesture, rather than misclassifying gesture i as gesture j. Table 6.4,

which contains the precision ratios for each gesture and each participant, highlights one

of the main disadvantages when using a sliding window approach for the recognition of

a multivariate temporal gesture within a continuous stream of data. This disadvantage

stems from having to choose a fixed window size from which to analyse the incoming

stream of data, as some gestures maybe too small for the window and others maybe

too large. The results in table 6.4 illustrate this problem as there are a number of null

markers (-) that indicate that there were no windows of data for which these gestures

had the maximum ID value and the analysis program therefore could not compute the

recall and precision values for these gestures. Table 6.4 also illustrates that the SVM

achieved an excellent recall ratio for the gestures that the analysis program could test.

The precision ratios and recall ratios shown respectively in Figures 6.10 and 6.11 ignore

the null markers in the computation of the mean and standard deviation values displayed

in both figures. The SVM achieved an excellent ANRR value of 0.97, indicating that the

algorithm was successful at classifying 97% of the null-gestures in the continuous data

stream.

G 1 G 2 G3 G 4 G 5 G 6 G 7 G 8 G 9 G10
P 1 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00
P 2 - 1.00 1.00 1.00 1.00 - 1.00 1.00 1.00 -
P 3 0.55 1.00 1.00 1.00 1.00 - 1.00 1.00 1.00 1.00
P 4 1.00 0.99 1.00 1.00 0.94 1.00 0.97 0.68 - 1.00
P 5 1.00 1.00 - 1.00 1.00 0.93 0.49 1.00 1.00 1.00
P 6 0.98 0.99 0.84 1.00 1.00 - 0.55 1.00 1.00 1.00
P 7 1.00 1.00 1.00 1.00 1.00 0.92 1.00 1.00 1.00 1.00
P 8 0.00 1.00 - 0.50 - 0.71 - - 1.00 -
P 9 1.00 1.00 1.00 1.00 0.84 1.00 1.00 - 1.00 1.00
P 10 1.00 1.00 1.00 1.00 1.00 - 1.00 1.00 1.00 1.00

Table 6.4: The precision ratio results for each of the 10 participants and 10 gestures.

Chapter 6. Support Vector Machines 142

6.2.3.2 Discussion

One interesting observation was gained by looking at the log files created during the

training and testing program that ran this experiment. The log files showed that, for

the gestures that were misclassified as a null gesture, the a posterior probabilities for

each gesture, including the kth gesture, were all a very small value (commonly below 0.1).

This is opposite to the case were a gesture was correctly classified, with the kth gestures

a posterior probability commonly having a value greater than 0.7 and the summation

of all the other gestures around 0.3. In other words, when the SVM made a correct

classification the likelihood that a gesture had occurred was high, whereas when the SVM

failed to make the correct classification the likelihood that no gesture had occurred was

(incorrectly) low. This observation therefore indicates that simply lowering the SVM

classification threshold to below 0.5 would not improve the classification results as there

is no definitive change in the probability estimates between a gesture that was classified

as a null-gesture and an actual null-gesture.

Figure 6.9: The correct classification results for each of the participants (blue) and
the overall ACCR (dashed red line).

These results suggest that the SVM would be a poor choice for the recognition of mul-

tivariate gestures from a continuous stream of data, even though the SVM achieved

excellent results with the same data set when the gestures were pre-segmented. Further

work is therefore required to enable the SVM algorithm to achieve the same results in

a continuous stream of data as it can with the pre-segmented data. In its present state,

the SVM algorithm could not be used as a real-time recognition algorithm for the classi-

fication of musical gestures from a continuous stream of data, for example, during a live

performance, as the performer could not rely on the system to automatically classify a

gesture with any great accuracy. The performer would instead be required to manually

Chapter 6. Support Vector Machines 143

Figure 6.10: The APR results for each of the gestures averaged across all 10 par-
ticipants (blue), along with the mean APR cross all 10 gestures (dashed red line) and

standard deviation (red bars).

Figure 6.11: The ARR results for each of the gestures averaged across all 10 par-
ticipants (blue), along with the mean ARR cross all 10 gestures (dashed red line) and

standard deviation (red bars).

instruct the computer that they have just performed a gesture by, for example, press-

ing a foot-switch at the start and end of the gesture. The system could then take this

segment of data and classify it against one of the gestures in its trained database.

Chapter 6. Support Vector Machines 144

6.3 SVM Summary

Support Vector Machines are a very powerful pattern recognition algorithm that have

the following advantages for the recognition of multivariate temporal gestures:

1. Can easily solve non-linear classification problems using the kernel trick

2. The determination of the SVM model parameters corresponds to a convex opti-

mization problem and therefore any local solution is also a global solution (unlike

for example an Artificial Neural Network which can commonly get stuck in a local

minimum rather than finding the global minimum)

3. The SVM can easily work with very large dimensional feature vectors

4. Even with a large amount of training data with high dimensional feature vectors,

the SVM algorithm can still train a model in a very short training time

5. A trained SVM contains a very sparse model (as it uses just the support vectors)

and therefore any real-time prediction can be computed efficiently

The work in this chapter has contributed the following aspects to the use of SVMs for

the recognition of multivariate temporal musical gestures:

1. Used segmented statistical time domain features to enable basic statistical features,

such as mean and standard deviation, to be used to desribe how a temporal signal

changes over time

2. Compared these features with a number of frequency domain features, finding

that for the recognition of the numbers-shapes data set the time domain features

outperformed the frequency domain features and nothing was gained by combing

the two features together

3. Applied Platt’s posterior probabilities to define a rejection threshold that can be

used to reject null gestures, thus alleviating the need to train a null model

4. Shown that the SVM with time domain features provides excellent classification

results for pre-segmented multivariate temporal gestures

5. Identified the conditions under which SVMs are likely to provide the best results

for the recognition of temporal gestures in a live performance scenario (i.e. using

a trigger key for example as opposed to using a continuous sliding window)

Chapter 6. Support Vector Machines 145

6.4 Summary

This chapter has investigated how a powerful machine learning algorithm called Support

Vector Machines can be applied for the recognition of multivariate temporal gestures.

It has described how a number of feature extraction algorithms were specifically applied

to represent multivariate temporal gestures and how the SVM was adapted to classify

gestures from a continuous stream of data. The chapter was concluded with a number of

experiments designed to evaluate the multivariate temporal classification abilities of the

SVM using the numbers-shapes data set. The experiments conducted in sections 6.2.1,

6.2.2 and 6.2.3 have shown the SVM algorithm combined with time-domain features

achieves excellent classification results on the numbers-shapes data set when the gestures

have been pre-segmented, even with a limited number of training examples. Further

work is required however for the adaption of the algorithm for the classification of

gestures in a continuous stream of data. Having explored both HMM and SVM as

potential methods for recognition of temporal gestures from a continuous stream of

data, it was concluded that a novel approach would be required if the problem was to

be satisfactorally addressed for the context of MCI. The next chapter therefore presents

a novel algorithm that has been specifically designed for the recognition of multivariate

temporal musical gestures, even from a continuous stream of data that also contains null

gestures.

Chapter 7

Dynamic Time Warping

Everything should be made as simple as possible,

but not simpler.

Albert Einstein

The previous chapter described how a Support Vector Machine could be applied to clas-

sify multivariate temporal gestures. Although the SVM algorithm achieved an excellent

recognition rate of 99.28% on the pre-segmented data from the numbers-shapes data set,

it failed to classify the same gestures from a continuous stream of data that also contained

null gestures. This chapter presents an algorithm that has been specifically designed to

recognise multivariate temporal musical gestures, even from a continuous stream of data.

The algorithm is based on Dynamic Time Warping and has been extended to classify

any N -dimensional signal and automatically compute a classification threshold to reject

any data that is not a valid gesture from a continuous stream of data that also contains

null gestures. The DTW algorithm is validated using the numbers-shapes data set after

which the chapter is concluded by summarising the advantages and disadvantages of all

the multivariate temporal recognition algorithms described throughout this thesis.

7.1 Dynamic Time Warping

Dynamic Time Warping is an algorithm that can compute the similarity between two

time-series, even if the lengths of the time-series do not match. One of the main issues

with using a distance measure (such as Euclidean distance) to measure the similarity

between two time-series is that the results can sometimes be very unintuitive. If for

example, two time-series are identical, but slightly out of phase with each other, then a

146

Chapter 7. Dynamic Time Warping 147

distance measure such as the Euclidean distance will give a very poor similarity measure.

Figure 7.1 illustrates this problem. DTW overcomes this limitation by ignoring both

local and global shifts in the time dimension (Salvador and Chan, 2007).

(a) Euclidean Distance (b) Dynamic Time Warping

Figure 7.1: Two identical time-series, slightly out of phase with each other, matched
using Euclidean distance and Dynamic Time Warping.

7.1.1 Related Work

There has been much work over the last two decades in applying DTW to such varying

fields as database indexing (e.g., Keogh and Pazzani, 2000, Ding et al., 2008), hand-

writing recognition (e.g., Vuori et al., 2001) and gesture recognition (e.g., Forbes and

Fiume, 2005, Heloir et al., 2006, Leong et al., 2009). Both Merrill and Paradiso (2005)

and Bettens and Todoroff (2009) have successfully applied DTW to the recognition of

musical gestures. The vast majority of the recent work into DTW has focused on mak-

ing the algorithm more computationally efficient, such as in the work by Keogh and

Pazzani (2000) and Keogh and Pazzani (2001), with the time series in these works all

being uni-dimensional signals. Proposed improvements to DTW included constraining

the warping path (e.g., Sakoe and Chiba, 1990, Itakura, 1990), lower-bounding (e.g.,

Keogh and Ratanamahatana, 2005, Lemire, 2009), numerosity reduction (e.g., Xi et al.,

2006) and recursive resolution projection (e.g., Salvador and Chan, 2007). It has only

been in recent years that research has been conducted into extending DTW to multiple

dimensions, with the exception of the early work by Stettiner et al. (1994) who proposed

an extension of DTW to multiple dimensions for the application of speech recognition.

Vlachos et al. (2003) extended DTW to match two-dimensional time series. In previous

work by ten Holt et al. (2007) and also separately by Ko et al. (2008), multi-dimensional

DTW was achieved by using a distance function such as the absolute sum, Euclidean

distance or cosine correlation coefficient to compute the distance over all the dimensions

in the test time series with a template time series for each sample in time. The result of

this distance function was used by the standard DTW algorithm to compute the warping

cost between the test time series and the template time series. Wullmer et al. (2009)

proposed a different approach to multi-dimensional DTW, using a three-dimensional

Chapter 7. Dynamic Time Warping 148

distance matrix to compute the minimum distance between the input time series and

a reference time series. This work used a bimodal input signal (speech data and ges-

ture data captured by a mouse) and would therefore be computationally expensive to

expand to an N -dimensional input stream as a large dimensional space would need to

be constructed and navigated for each of the G gestures in the database.

7.1.2 One-Dimensional DTW

The foundation algorithm for DTW is as follows. Given two, one-dimensional, time-

series, x = {x1, x2, ..., x|x|}ᵀ and y = {y1, y2, ..., y|y|}ᵀ, with respective lengths |x| and

|y|, construct a warping path w = {w1, w2, ..., w|w|}ᵀ so that |w|, the length of w is:

max{|x|, |y|} ≤ |w| < |x|+ |y| (7.1.1)

where the kth value of w is given by:

wk = (xi,yj) (7.1.2)

A number of constraints are placed on the warping path, which are as follows:

• The warping path must start at: w1 = (1, 1)

• The warping path must end at: w|w| = (|x|, |y|)

• The warping path must be continuous, i.e. if wk = (i, j) then wk+1 must equal

either (i, j), (i+ 1, j), (i, j + 1) or (i+ 1, j + 1)

• The warping path must exhibit monotonic behavior, i.e. the warping path can not

move backwards

There are exponentially many warping paths that satisfy the above conditions. However,

the only path that needs to be found is the warping path that minimizes the normalised

total warping cost given by:

min
1
|w|

|w|∑
k=1

DIST (wki
,wkj

) (7.1.3)

where DIST (wki
,wkj

) is the distance function (typically Euclidean) between point i in

time-series x and point j in time-series y, given by wk.

The minimum total warping path can be found by using dynamic programming to fill a

two-dimensional (|x| by |y|) cost matrix C. Each cell in the cost matrix represents the

Chapter 7. Dynamic Time Warping 149

accumulated minimum warping cost so far in the warping between the time-series x and

y up to the position of that cell. The value in the cell at C(i,j) is therefore given by:

C(i,j) = DIST (i, j) + min{C(i−1,j),C(i,j−1),C(i−1,j−1)} (7.1.4)

which is the distance between point i in the time-series x and point j in the time-series

y, plus the minimum accumulated distance from the three previous cells that neighbor

the cell i,j (the cell above it, the cell to its left and the cell at its diagonal).

When the cost matrix has been filled, the minimum possible warping path can easily be

calculated by navigating through the cost matrix in reverse order, starting at C(|x|,|y|),

until cell C(1,1) has been reached. At each step, the cells to the left, above and diagonally

positioned with respect to the current cell are searched to find the minimum value. The

cell with the minimum value is then moved to and the previous three cell search is

repeated until C(1,1) has been reached. Figure 7.2 illustrates the cost matrix and the

minimum warping path.

Figure 7.2: Cost Matrix and the Minimum Warping Path through it (indicated by
the red line).

The warping path then gives the minimum normalised total warping distance between

x and y:

DTW (x,y) =
1
|w|

|w|∑
k=1

DIST (wki
,wkj

) (7.1.5)

Here, 1
|w| is used as a normalisation factor to allow the comparison of warping paths of

varying lengths.

Chapter 7. Dynamic Time Warping 150

7.1.3 Numerosity Reduction

DTW is a useful tool for computing the distance between two time-series. It is, however,

a computationally costly algorithm to use for real-time recognition, as every value in the

cost matrix must be filled. Clearly this is unusable for real-time recognition purposes,

particularly if the unknown time-series is being matched against a large database of

gestures.

To speed up both the training of the gesture templates and the real-time classifica-

tion of an unknown N -dimensional input time-series, a number of numerosity reduction

methods were tested. Perhaps one of the most rudimentary methods for numerosity

reduction is to downsample the time-series by a factor of n. To avoid aliasing, the data

is filtered using a low-pass FIR filter with a rectangular window and a filter order of n.

The maximum cutoff frequency should be set to π/n to ensure the sampling theorem

is maintained. Care should be taken when setting the downsample factor as, although

using a high downsample factor gives the advantage of greatly reducing the size of the

cost matrix, it also has the affect of removing important high frequency information

from the signal which may reduce the overall accuracy of the algorithm.

7.1.4 Constraining the Warping Path

Another method commonly adopted for improving the efficiency of DTW is to constrain

the warping path so that the maximum warping path allowed cannot drift too far from

the diagonal. Controlling the size of this warping window will greatly affect the speed

of the DTW computation. If the warping window is small, a large proportion of the

cost matrix does not need to be searched or even constructed. The size of the warping

window can be controlled by varying the parameter r, given as the percentage of the

length of the template time-series. The warping window is then set as the distance, r,

from the diagonal to directly above and to the right of the diagonal. This type of global

constraint is referred to as the Sakoe-Chiba band (Sakoe and Chiba, 1990), Itakura

(1990) has also proposed another global constraint based on a parallelogram.

Chapter 7. Dynamic Time Warping 151

7.2 N-Dimensional Dynamic Time Warping

Section 7.1.1 described the standard implementation of DTW for two uni-dimensional

time-series. It is common, however, in computational fields such as gesture recognition

to have time-series that feature multiple-dimensions, such as data captured by a 3-axis

accelerometer. It is in this instance that we require an implementation of DTW that can

compute the distance between two N -dimensional time-series. The common approach

used by ten Holt et al. (2007) and Ko et al. (2008) will be used to compute the distance

between two N -dimensional time-series. This takes the summation of distance errors

between each dimension of an N -dimensional template and the new N -dimensional time-

series. The total distance across all N dimensions is then used to construct the warping

matrix C. The Euclidean distance will be used as a distance measure across the N

dimensions of the template and new time-series.

DIST (i, j) =

√√√√ N∑
n=1

(in − jn)2 (7.2.1)

The following section describes ourN -Dimensional Dynamic Time Warping (ND-DTW)

algorithm. In the training stage, an N -dimensional template (φg) and threshold value

(τg) for each of the G gestures is computed. In the real-time prediction stage a new

N -dimensional time-series is classified against the template that gives the minimum

normalised total warping distance between the N -dimensional template and the un-

known N -dimensional time-series. Each element of the algorithm will now be discussed

in detail.

Figure 7.3: Real-time classification using ND-DTW.

7.2.1 Training the ND-DTW Algorithm

In order for ND-DTW to be used as a real-time recognition algorithm, a template must

first be created for each gesture that needs to be classified. A template can be computed

by recording Mg training examples for each of the G gestures that are required to be

recognised. After the training data has been recorded, each of the G templates can be

found by computing the distance between each of the Mg training examples for the kth

Chapter 7. Dynamic Time Warping 152

gesture and searching for the training example that gives the minimum normalised total

warping distance when matched against the other Mg-1 training examples in that class.

The gth template (φg) is therefore given by:

φg = arg min
i

1
Mg − 1

Mg∑
j=1

1{ND-DTW(Xi,Xj)}

1 ≤ i ≤Mg (7.2.2)

where the 1{·} that surrounds the ND-DTW function is the indicator bracket, giving 1

when i 6= j or 0 otherwise and Xi and Xj are the ith and jth N -dimensional training ex-

amples for the gth gesture in the form of X = {x1,x2, ...,xN} with xi = {x1, x2, ..., x|x|}ᵀ.

The ND-DTW function in (7.2.2) is simply the extension of the standard DTW algo-

rithm to N -dimensions:

ND-DTW(X,Y) = min
1
|w|

|w|∑
k=1

DIST (wki
,wkj

)

DIST (i, j) =

√√√√ N∑
n=1

(in − jn)2 (7.2.3)

7.2.2 Multi-Threaded Training

One major advantage of using the DTW algorithm is that each template (i.e. each

gesture) can be computed independently from the other templates. This is of particu-

lar use on new machines that feature multiple processors as a multi-threaded training

approach can be adopted in which each template’s training routine is launched in a

separate thread. This training approach greatly speeds up the overall training time for

a DTW classification system as one template does not need to wait for the previous

template to be trained before it can start its own training routine.

The DTW algorithm also has one other advantage in that, if a new gesture is added to

an existing trained database or an existing gesture is removed, the entire database does

not need to be retrained. Instead, a new template and threshold value only needs to be

trained for the new gesture, thus greatly reducing the training time. If an existing gesture

is removed from the database then no training is required as the DTW classification

system simply removes this template and threshold value from its database. This is not

the case for other machine learning algorithms, such as an Artificial Neural Network,

Chapter 7. Dynamic Time Warping 153

as the entire system would need to be retrained from scratch any time a new gesture is

added or removed.

7.2.3 Classification using the ND-DTW Algorithm

After the templates have been created for each gesture in the database, an unknown N -

dimensional time-series X can be classified by computing the normalised total warping

distance between X and each of the G templates. c, the classification index represent-

ing the gth gesture is then given by finding the corresponding template that gave the

minimum normalised total warping distance:

c = arg min
g

ND-DTW(φg,X) 1 ≤ g ≤ G (7.2.4)

7.2.4 Determining the Classification Threshold

Using equation (7.2.4) X, an unknown N -dimensional time-series, can be classified by

calculating the distance between it and all the templates in the database. The unknown

time-series X can then be classified against the template that results in the lowest

normalised total warping distance. This method will, however, give false positives if

the N -dimensional input time-series X is in-fact not made up of any of the gestures

in the database. This false classification problem can be mitigated by determining a

classification threshold for each template gesture during the training phase. In the

prediction phase, a gesture will only be classified against the template that results in

the lowest normalised total warping distance, if this distance is less than or equal to the

gesture’s classification threshold. If the distance is above the classification threshold,

then the algorithm will classify the gesture against a null class, indicating that no match

was found:

ĉ =

c if(d ≤ τg)

0 otherwise
(7.2.5)

where c is given by equation (7.2.4), d is the total normalised warping distance between

φg and X and τg is the classification threshold for the gth template.

The classification threshold for each template can be set as the average total normalised

warping distance between φg and the other Mg − 1 training examples for that gesture,

plus γ standard deviations:

Chapter 7. Dynamic Time Warping 154

τg = µg + (σgγ) (7.2.6)

where

µg =
1

Mg − 1

Mg∑
i=1

1{ND-DTW(φg,Xi)} (7.2.7)

σg =

√√√√ 1
Mg − 2

Mg∑
i=1

1{(ND-DTW(φg,Xi)− µg)2} (7.2.8)

where the 1{·} that surrounds the ND-DTW function is the indicator bracket, giving

1 when i 6= the index of the training example that gave the minimum normalised total

warping distance when matched against the other Mg-1 training examples in that class

(i.e. the template) or 0 otherwise and Xi is the ith training example for the gth class.

γ can be initially set to a number of standard deviations (e.g. 2) during the training

phase and later adjusted by the user in the real-time predication phase until a suitable

classification/rejection level has been achieved.

It is critical when calculating the classification threshold for each of the g gestures to

perform any pre-processing such as scaling or downsampling in the same order as it

would be performed during the real-time classification stage. If this is not completed in

the same order then the optimal classification threshold will not be found. The various

pre-processing options that can be used for ND-DTW will now be discussed.

7.2.5 Pre-processing for ND-DTW

Pre-processing is necessary for ND-DTW if either (a) any of the N -dimensional data

originate from a different source range or (b) if invariance to spatial variability and

variability of signal magnitude is desired. Each of these scenerios will now be discussed,

giving appropriate pre-processing solutions for each.

(a) Varying Input Source Ranges

It is important for each of the N -dimensional data in the time-series X to originate

from a common source range. If this is not the case then one or more of the dimensions

may heavily weight the results of the DTW. If each of the N -dimensional data do not

Chapter 7. Dynamic Time Warping 155

originate from a common source range then each dimension should be scaled using min-

max normalisation prior to both the training of the templates and real-time prediction.

The minimum and maximum source range values for each of the N -dimensions can be

found by searching over all the training data and locating the min and max values

for each dimension. Each dimension of the training data (training phase only) or the

unknown data (prediction phase only) can then be scaled using these min and max

values to a standard target range (i.e. 0.0 to 1.0).

(b) Invariance to Spatial Variability and Variability of Signal Amplitude

Spatial variance and variability in the signal amplitude can be mitigated by first z-

normalising both the input time-series and also the recognition templates. Z-normalisation

will give both the input and template time-series zero mean and unit variance, therefore

removing any affect that spatial variation or variability in the signal amplitude may have

had. Keogh and Pazzani (2001) also proposed using the derivative of the input signals

to account for similar spatial problems. This method was also used successfully by ten

Holt et al. (2007).

7.2.6 Dealing With A Large Gestural Vocabulary

The ND-DTW algorithm has been used in a number of real-time recognition scenarios

that allowed a performer to use body movements (such as hand and arm gestures) to

control various audio parameters and effects live on stage. These tests all involved

relatively small gestural vocabularies, normally consisting of approximately 10 gestures

with each gesture lasting around 1-2 seconds. With this small gesture vocabulary the

ND-DTW algorithm was able to classify the correct gesture in real-time with insignificant

processing delay. If the gestural vocabulary being used consists of a large number of

gestures (i.e. G > 100), then the processing delay will become unusable for real-time

interaction. This problem can be mitigated by grouping the trained templates into

clusters and using a search tree to classify an unknown N -dimensional time-series by

using ND-DTW to compute the distance between the projected time-series with each

node in the current leaf, working down through each child until the best match has been

found.

Chapter 7. Dynamic Time Warping 156

7.3 ND-DTW Experiments

Three experiments were run to validate the classification abilities of the ND-DTW al-

gorithm. The first experiment evaluated the classification abilities of the ND-DTW

algorithm with the pre-segmented gestures from the numbers-shapes data set (see chap-

ter 5.2). The second experiment evaluated the classification abilities of the ND-DTW

algorithm with respect to a minimal amount of training data. Finally, the third ex-

periment evaluated the ND-DTW algorithm’s ability to correctly classify data from the

numbers-shapes data set in a continuous stream of data that also contains a number of

null gestures.

7.3.1 ND-DTW Experiment A

This experiment evaluated the ND-DTW algorithm’s ability to correctly classify the

pre-segmented data from the numbers-shapes data set. For each participant, a ND-

DTW model was trained using 10-fold cross-validation, with the average cross-validation

ratio (ACVR) taken over all 10 participants being used to evaluate the algorithm.

This experiment was run with four conditions (C1) scaling off, z-normalisation off, (C2)

scaling on, z-normalisation off, (C3) scaling off, z-normalisation on and (C4) scaling on

z-normalisation on. γ was set to 2 for this experiment and downsampling was used with

n set to 5.

7.3.1.1 Results

Condition C2 (scaling on, z-normalisation off) achieved the maximum ACVR of 99.37%,

however the other conditions also achieved excellent classification results of 98.85% for

C1, 98.95% for C3 and 99.37% for C4. The ND-DTW algorithm achieved the maximum

cross-validation classification result in condition C2 of 100% for participants 1, 2, 3, 5

and 7. The ND-DTW algorithm achieved the minimum cross-validation classification

result with 95.5% for participant 10. Figure 7.4 shows the cross-validation results for

each of the 10 participants in condition C2.

7.3.1.2 Discussion

This test shows that the ND-DTW algorithm provides excellent classification results

with pre-segmented data, achieving an ACVR value of 99.37%, an improvement of just

over 11% when compared with the HMM on the same data set. The algorithm achieved a

perfect recognition result of 100% for various participants, with the algorithm achieving

Chapter 7. Dynamic Time Warping 157

Figure 7.4: The cross-validation classification results for each of the 10 participants
in condition C2. The ACVR is shown by the horizontal red dashed line.

a classification result of over 99% for all but 1 participant. All four conditions achieved

excellent classification results of 98% and above. This suggests that the scaling and

normalisation pre-processing methods had little influence on the classification abilities

of the algorithm when each gesture was pre-segmented. This is not surprising as the

input to the ND-DTW algorithm consisted of a 3-dimensional vector containing the x, y

and z position coordinates of the Polhemus sensor that was located on each participant’s

right hand. Each dimension therefore originated from a common source range and scaling

or z-normalising only made a small improvement to the overall classification abilities of

the algorithm.

7.3.2 ND-DTW Experiment B

This experiment evaluated the classification abilities of the ND-DTW algorithm with

respect to a minimal amount of training data. This is an important test for MCI as, if a

model can achieve as good a classification result with 5 training examples as it can with

50 training examples, then a performer can save time in both collecting the training

data and also in training the model.

7.3.2.1 Method

For each participant, a ND-DTW model was trained using η randomly selected training

examples from each of the 10 gestures and tested with the remaining data. η ranged from

3 - 20, starting at 3 as opposed to 1 because at least 3 training examples are required to

estimate the threshold value for each template and stopping at 20 to allow at least 5 test

Chapter 7. Dynamic Time Warping 158

examples per trial. To ensure that the results of this test were not weighted by a ‘lucky’

random selection of the best template from the 25 training samples of each gesture, each

test for η was repeated 10 times and the average correct classification ratio was recorded.

The scaling pre-processing option was used for this experiment, however z-normalisation

was not, as this combination of pre-processing options achieved the best results in the

ND-DTW experiment A. γ was set to 2 for this experiment and downsampling was used

with n set to 5.

7.3.2.2 Results & Discussion

Figure 7.5 shows the ACCR values for each iteration of η. This test suggests that the

number of training examples significantly affects the classification abilities of the ND-

DTW algorithm. The ND-DTW algorithm achieved a moderate ACCR value of 74.74%

with just 3 training examples. With 20 training examples it was able to achieve an ACCR

value of 92.19%. It should be noted that the standard deviation over each iteration of η

and across all 10 participants was very high. This shows that the classification abilities

of the ND-DTW algorithm is heavily dependent on getting the ‘best’ training examples.

An ACCR value of > 90%, for example, was achieved for several participants with just

3 training examples. An ACCR value of < 70%, however, was also achieved for the

same participants with 3 training examples, showing that the ‘quality’ of the training

examples heavily influences the results of the classification algorithm. The results of

this test suggest that at least 11 training examples are required per-gesture if the user

wants to achieve a robust classification result of > 90%.

Figure 7.5: The ACCR values averaged across all 10 participants for each iteration
of η. The horizontal blue dashed line indicates the minimal training examples required

to achieve a classification result of > 90%.

Chapter 7. Dynamic Time Warping 159

7.3.3 ND-DTW Experiment C

This experiment evaluated the ND-DTW algorithm’s ability to correctly classify the

gestures from the numbers-shapes data set in a continuous stream of data that also

contains a number of null gestures. This evaluates two important aspects of ND-DTW

for the recognition of multivariate temporal gestures. Namely the algorithm’s ability to

correctly classify a set of temporal gestures from a continuous stream of data and also

the algorithm’s ability to reject any null gesture that is not contained in the model’s

database.

7.3.3.1 Method

For each participant, a ND-DTW model was trained using 12 randomly selected training

examples from each of the 10 gestures. After each model had been trained it was

tested using a continuous stream of data. The continuous stream of data originated

from the data-collection phase of the numbers-shapes database and contained all of the

participant’s trial recordings. The continuous stream therefore contains not only all of

the 25 gestures the participant performed (12 of which were used to train the model)

but also, importantly, the participant’s movements in between each trial along with the

periods of rest.

The continuous stream was tested by running a sliding window of size w over the data

stream in increments of 10. The window size, w, was individually calculated for each

participant by taking the average length of the 10 ND-DTW templates for that par-

ticipant. For the majority of the participants, w was 304, with the shortest window

length of 248 and the longest window length of 368. At each increment, the data within

the window was given to the ND-DTW model for classification. Each sample in the

continuous stream had been labelled with the gesture ID tag (0 for a null-gesture or the

gth class ID for an actual gesture). This ID tag was used to evaluate if the ND-DTW

model had made the correct classification for each window of data. As some windows

may cover a section of data that contains half a gesture and non-gestural data, the

classification results of a window were only used if the maximum ID count within the

window was greater than 80% of the length of the window. The threshold value of 80%

was used as this enabled any gesture that was shorter than the window size to still be

included in the analysis. A correct classification result was considered if the correct class

label was predicated by the ND-DTW model (i.e. if the gth template gave the minimum

normalised warping distance and if this value was less than the gth model’s classifica-

tion threshold). The following classification errors were evaluated for this experiment:

Chapter 7. Dynamic Time Warping 160

C1 C2 C3 C4
ACCR σ ACCR σ ACCR σ ACCR σ

γ : 2.0 78.48 11.08 78.03 9.70 62.92 9.78 62.92 9.78
γ : 5.0 83.31 11.55 84.18 9.25 74.15 12.19 74.15 12.19
γ : 10.0 77.93 9.31 80.69 7.61 74.67 13.11 74.67 13.11

Table 7.1: The ACCR results for each value of γ and for each of the four pre-processing
conditions.

ACCR, APR, ARR and ANRR. This test was run with same four pre-processing con-

ditions used in the ND-DTW experiment A. This test was also run with three different

values of γ to evaluate the affect this parameter has on the continuous classification

abilities of the ND-DTW algorithm, with γ set to 2.0, 5.0 and 10.0. Downsampling was

used in all conditions with n set to 5.

7.3.3.2 Results

Table 7.1 shows the ACCR results for each setting of γ and each of the four pre-processing

conditions. The maximum ACCR value of 84.18% was achieved with a γ value of

5.0 using the C2 pre-processing condition (scaling on, znormalistion off). With these

settings, the maximum individual correct classification result of 95.23% was achieved by

the algorithm for participant 1, while the algorithm achieved the minimum individual

correct classification result of 64.09% for participant 8. Figure 7.6 shows the correct

classification results (CCR) for all the participants in the best performing trial. Table

7.2 shows the individual correct classification results for each participant, for each setting

of γ and each of the four pre-processing conditions. The type of pre-processing method

used had a significant affect on the classification results over all values of γ, with the

conditions using znormalisation frequently achieving poorer classification results than

those conditions that did not use znormalisation. A possible explanation for the poor

performance of the conditions that used znormalisation is that, because znormalisation

will give the data zero mean and unit variance, this could reduce the difference between

a null gesture and an actual gesture and therefore increase the number of false-positive

classification errors.

Table 7.3 shows the APR and ARR results for the best performing condition (γ = 5.0,

C2). The APR and ARR results show that the majority of classification errors were made

by in the recall of the algorithm, as opposed to the precision of the algorithm. This shows

that the DTW algorithm made the majority of classification errors by misclassifying

gesture i as a null gesture, rather than misclassifying gesture i as gesture j. The ANRR

Chapter 7. Dynamic Time Warping 161

value of 0.88 indicates that the algorithm was successful at rejecting null gestures 88%

of the time.

7.3.3.3 Discussion

These results suggest that the ND-DTW algorithm performed well at classifying a num-

ber of multivariate temporal gestures from a continuous stream of data that also con-

tained a number of null gestures. The most interesting results from this evaluation came

from the affect that the γ parameter had on the classification abilities of the algorithm.

Increasing γ from 2.0 to 5.0 increased the overall classification abilities of the algorithm

(from a maximum ACCR value of 78.48% with γ = 2.0 to a maximum ACCR value of

84.18% with γ = 5.0). Increasing the γ value, however, also had the adverse effect of

decreasing the overall precision of the algorithm, with the average APR across all 10

participants decreasing from 0.95 with γ = 2.0, to 0.90 with γ = 5.0. The ANRR value

also decreased from 0.94 with γ = 2.0, to 0.88 with γ = 5.0. These results show that

increasing γ, and therefore increasing the classification threshold value for each gesture,

increases the likelihood that a gesture will be classified correctly but it will also unfor-

tunately increase the likelihood of false-positive misclassications. If the γ parameter is

set too high then the overall classification abilities of the algorithm will start to degrade

altogether, as was the case when γ was set to 10.0. This problem illustrates the com-

promise that a user must make about the sensitivity of their classication system. One

performer, for example, may prefer a classification system that always recognises their

gestures but also frequently makes false-positive classifications. Another perform could,

alternatively, choose to have a classification system that failed to correctly recognise all

of their gestures but rarely made any false-postive classification errors. It is for this

specific reason that the γ parameter was added to the ND-DTW algorithm as this en-

ables the performer to manually adjust this threshold value themselves until they have

reached a satisfactory recognition rate.

One very important observation was made when looking at the prediction log-file for this

experiment that suggests that the continuous classification abilities of the ND-DTW are

in-fact even better than the ACCR results would imply. The prediction log-file was a

data file that contained the analysis results for each window of data that was analysed

by the ND-DTW for every participant, each γ value and each condition. The analysis

results contained a number of values representing the status of the ND-DTW model at

each analysis window, including the known class ID tag, the models predicted ID tag and

the ND-DTW distance estimates for the 10 gestures. The algorithm frequently made

the correct classification of a gesture when the sliding window reached the ‘middle’ of

the gesture. However, the ND-DTW algorithm would commonly estimate that the data

Chapter 7. Dynamic Time Warping 162

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
γ : 2.0

C1 86.45 89.26 75.66 76.37 79.92 85.10 88.94 51.51 78.66 72.91
C2 87.20 85.02 72.03 74.10 82.70 86.48 88.87 59.48 76.67 67.78
C3 72.16 65.07 53.47 64.12 64.58 67.99 76.35 41.38 63.78 60.28
C4 72.16 65.07 53.47 64.12 64.58 67.99 76.35 41.38 63.78 60.28

γ : 5.0
C1 94.23 90.98 83.69 79.95 82.75 91.49 91.28 54.03 85.60 79.09
C2 95.23 90.56 84.91 77.76 86.21 89.20 93.89 64.09 81.03 78.89
C3 84.71 79.71 62.20 72.00 79.68 78.92 86.29 45.54 79.42 73.02
C4 84.71 79.71 62.20 72.00 79.68 78.92 86.29 45.54 79.42 73.02

γ : 10.0
C1 85.44 83.14 81.19 78.95 75.88 84.71 80.68 54.76 83.93 70.60
C2 89.33 86.78 83.84 78.42 84.80 83.60 83.52 63.33 80.38 72.92
C3 91.27 83.67 64.95 71.98 77.97 76.96 75.34 43.60 84.91 76.09
C4 91.27 83.67 64.95 71.98 77.97 76.96 75.34 43.60 84.91 76.09

Table 7.2: The individual correct classification results for each of the 10 participants,
for each of the three values of γ and each of the four pre-processing conditions. Condi-

tion C2 with γ = 5.0 achieved the maximum ACCR value of 84.18%.

Figure 7.6: The correct classification results for each of the 10 participants with
γ = 5.0 and using the pre-processing condition C2 (scaling on and z-normalisation off).

The ACCR value is shown by the horizontal red dashed line.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
APR 0.91 0.89 0.80 0.79 0.92 0.95 0.83 0.96 0.95 0.96
ARR 0.93 0.78 0.85 0.81 0.82 0.66 0.94 0.93 0.92 0.90

Table 7.3: The average precision ratio and average recall ratio for each gesture with
γ = 5.0 and using the pre-processing condition C2 (scaling on and z-normalisation off).

Chapter 7. Dynamic Time Warping 163

in the sliding window was a null gesture when in-fact the window contained a majority

of the start or end of a gesture. Figures 7.7 and 7.8 illustrate this problem. The

significance of this observation is that the ND-DTW algorithm may not have correctly

classified every single window of data, however, it was able to consistently classify each

gesture correctly over the course of a number of consecutive windows, commonly when

the sliding window had reached the ‘middle’ of a gesture. This means that if a performer

used a post-processing class ID filter (that only allowed a gesture ID to be acted upon

if n consecutive gesture IDs were predicted for example) on the predicted gesture ID of

the ND-DTW algorithm then the classification abilities of the algorithm would be even

more robust than the ACCR result suggests.

7.4 ND-DTW Summary

The ND-DTW algorithm provides a formidable algorithm for the recognition of multi-

variate temporal gestures due to its applicability to classifying temporally variant signals.

The experiments conducted in sections 7.3.1, and 7.3.3 have shown that the ND-DTW

algorithm achieves excellent classification results on the numbers-shapes data set when

the gesture has been pre-segmented and with a limited number of training examples.

The algorithm also achieved moderate classification results when used to recognise the

numbers-shapes gestures from a continuous stream of data that also contained null ges-

tures, something that neither the Hidden Markov Models or Support Vector Machines

achieved.

The following modifications to the DTW algorithm were contributed to optimize it for

the recognition of musical gestures:

1. Adopted a multi-threaded training approach for each gesture to minimise the total

training time of the algorithm

2. Computed the template for each gesture using equation (7.2.2)

3. Added a threshold classification value for each gesture, thus alleviating the need

for training a null gesture model

4. Enabled the threshold value for each gesture to be manually adjusted by the user

in the real-time prediction phase, thus allowing the performer to choose their own

suitable classification/rejection level

Chapter 7. Dynamic Time Warping 164

Figure 7.7: An illustration of the prediction abilities of the ND-DTW algorithm. The
three waveforms in the top most graph show the ND-DTW distance between a window
of data and each of the first three gesture templates. The bottom graph shows the class
ID tag and overall predicted ID tag from the ND-DTW algorithm at the same time

window as the top graph.

Figure 7.8: An illustration of the continuous classification abilities of the ND-DTW
algorithm. This image contains a small segment of data that was shown in Figure 7.7.
In addition to the three distance measures for each of the first three gesture templates,
the top graph now also shows the classification threshold for the first gesture (solid
horizontal cyan line). Note, by looking at the predicted ID tag in the lower graph,
how the algorithm correctly estimates that gesture 1 has occurred but only from the

windows that cover the center of the gesture and not the start or end windows.

Chapter 7. Dynamic Time Warping 165

7.5 Multivariate Temporal Recognition Algorithm Sum-

mary

This chapter and the previous two chapters have all presented algorithms that can

be used for the real-time recognition of multivariate temporal musical gestures. This

chapter is concluded by summarising the advantages and disadvantages of each algorithm

and suggest scenarios where a performer may want to favor one algorithm over another.

Reiterating the design criteria outlined in chapter 3.2, a machine learning algorithm

used for musician-computer interaction should provide the following functionality:

1. The input to the algorithm should be flexible and not constrained to one type of

sensor or feature

2. The algorithm should be able to be quickly trained

3. The algorithm should not require hundreds of training examples in order to train

a robust model

4. The algorithm should be able to recognise a gesture from a continuous stream of

data and also reject null gestures without having to first train a noise/null gesture

model

5. The algorithm should provide a low intra-personal generalisation error

With these goals in mind the three multivariate temporal recognition algorithms de-

scribed throughout this chapter and the previous two chapters have been grouped into

table 7.4.

HMM SVM ND-DTW
Flexible N -Dimensional Input Yes? Yes Yes
Training Time Moderate Low Low
Training Size Required Moderate Low Low
Applicability For Pre-segmented Recognition Moderate High† High
Applicability For Unsegmented Recognition Low Low High
Intra-personal Classification Rate Moderate High High
†: when appropriate feature extraction is used such as the time domain or
frequency domain features presented in chapter 6.1.4.
?: when appropriate feature extraction is used such as k-means and SAX

Table 7.4: A summary of the advantages and disadvantages of the HMM, SVM and
ND-DTW algorithms for the real-time classification of multivariate temporal musical

gestures.

Chapter 7. Dynamic Time Warping 166

7.5.1 Choosing Which Algorithm To Use When

The HMM, SVM and ND-DTW algorithms can all be applied to the recognition of

multivariate temporal musical gestures. There are instances, however, where a performer

may want to favor one algorithm over another. The results of the experiments on the

numbers-shapes data set suggest that a performer might want to first try either the

SVM or ND-DTW algorithm before trying the HMM algorithm as the SVM and ND-

DTW algorithms consistently outperformed the HMM algorithm in several scenarios.

But when should a performer use the SVM algorithm and when should they try the

ND-DTW algorithm? To answer this question, a number of possible scenarios where

one algorithm would be more appropriate to try before the other have been highlighted.

7.5.1.1 Limited Number Of Training Examples

What if a performer only wants to record a very limited number of training examples

for each gesture to train their recognition system (i.e. 1 or 2 examples at most). Which

algorithm would be best to use in this scenario? Both the SVM and ND-DTW algorithm

performed well with a limited number of training examples, with both algorithms achiev-

ing a classification result of 90% with just 11 training examples. The SVM algorithm,

however, performed poorly with a very limited number of training examples, achieving

an ACCR value of less than 10% when just 4 training examples were used to train the

algorithm. The ND-DTW algorithm, alternatively, performed significantly better with

a very limited number of training examples, i.e. achieving an ACCR value of over 80%

with only 4 training examples. The ND-DTW algorithm could in-fact be trained with

just one training example per gesture, however, the user would need to empirically set

the classification threshold value for each gesture as the algorithm can not estimate this

with only one training example. The ND-DTW algorithm would therefore be a better

algorithm for a performer to first use to attempt to classify their multivariate temporal

musical gestures if they intend to train the algorithm with only a limited number of

training examples.

7.5.1.2 Substantial Number Of Training Examples

What if a performer has prototyped their gestural vocabulary and is happy with each

action-sound relationship and now wants to create the most robust recognition system

possible? In this instance the performer might be willing to record hundreds of training

examples for each gesture in their gestural vocabulary. If an ample number of training

Chapter 7. Dynamic Time Warping 167

examples are available (i.e. hundreds or even thousands of training examples per ges-

ture) which algorithm would be best to use? Both the SVM algorithm and ND-DTW

algorithm achieved excellent classification results of 99% on the numbers-gestures data

set when the majority of the data set was used to train the algorithms. One advantage

that the SVM algorithm has over the ND-DTW algorithm is that, due to the way it is

trained, a larger training set will commonly result in a more robust model. Increasing

the size of the data set should therefore always improve the generalisation abilities of the

SVM algorithm. The ND-DTW algorithm on the other hand may not benefit as much

from a very large training-set. This is because the algorithm picks ‘the best’ training

example from the data set to use as the gth template. The algorithm, however, only

uses one training example as the template for each gesture regardless of the number

of training examples available. Therefore, increasing the size of the data set may only

marginally improve the generalisation abilities of the algorithm. The ND-DTW algo-

rithm could take advantage of a large data set if more than one template was chosen for

each gesture and a k-nearest neighbor voting scheme was used to classify an unknown

gesture against one of the G gestures in the trained model. This technique increases the

complexity of the model however and therefore increases both the training and predic-

tion times of the algorithm so it might be unsuitable for certain real-time applications.

The SVM algorithm would therefore be a better algorithm for a performer to first use to

attempt to classify their multivariate temporal musical gestures if they intend to train

the algorithm with a substantial number of training examples.

7.5.1.3 Adding & Removing Gestures From A Trained Model

What if a performer has trained a machine learning algorithm with a data set and then

decides to either remove a gesture or add a new gesture to their gestural vocabulary? In

this scenario, particularly if there are a substantial number of training examples for each

gesture, the performer might not want to have to re-train an algorithm from the start

but instead simply have to update the model with the gestures that have been changed.

In this instance the SVM algorithm might not be the best algorithm to use as, due to

the way it is trained and how it handles a multi-class classification problem, the entire

model would have to be trained from the start. The ND-DTW algorithm would be more

suitable in this scenario as, because each template is separate from every other template

in the model, an unwanted gesture would simply need to be deleted from the ND-DTW

model or alternatively if a new gesture was to be added then only that gesture template

and classification threshold would need to be trained, as opposed to the entire model.

Chapter 7. Dynamic Time Warping 168

7.5.1.4 Automatic Recognition

What if a performer is unable to use a ‘trigger key’ due to practical or aesthetic reasons?

In this scenario the performer should use the ND-DTW algorithm as it was the only

algorithm out of the three multivariate temporal recognition algorithms that achieved

a useable classification result when recognising a gesture from a continuous stream of

data using the sliding window technique.

7.6 Summary

This chapter has presented the ND-DTW algorithm and validated its ability to clas-

sify multivariate temporal musical gestures. The experiments in this chapter showed

that the ND-DTW algorithm achieved excellent classification results on the gestures

in the numbers-shapes data set when the gestures were pre-segmented and also from

a continuous stream of data that also contained null gestures. The experiments also

showed that the ND-DTW algorithm could achieve excellent classification results with

a limited number of training examples. The chapter was concluded by summarising the

advantages and disadvantages of all the multivariate temporal recognition algorithms

described throughout this thesis, suggesting scenarios where a performer may want to

favor one algorithm over another. The next and final chapter concludes this thesis, sum-

marising the work described throughout the thesis and highlighting the contributions

achieved within it.

Chapter 8

Conclusion

The important thing is not to stop questioning.

Curiosity has its own reason for existing.

Albert Einstein

The work presented in this thesis has set out to investigate how machine learning can

be applied to the recognition of musical gestures. Whereas the majority of previous

work in the recognition of musical gestures has focused on the continuous mapping

of a movement to a sound or control parameter; the work in this thesis has focused

on the discrete classification of a musical gesture. The main research question of this

thesis was: how can machine learning be applied to the recognition of musical

gestures? The work in this thesis has shown that by adopting a machine learning

approach a musician can quickly train a computer to accurately recognise even complex

multivariate temporal gestures. However, to achieve this required a paradigm shift from

the common design, development, training and evaluation strategies applied throughout

many areas of machine learning, in HCI and beyond.

The main objectives of this thesis were to:

1. Evaluate what differences, if any, there are between the application of machine

learning for the recognition of musical gestures from that of the recognition of

other gestures used throughout various fields within human-computer interaction.

2. Test the applicability of the machine learning algorithms that are potentially the

most appropriate for the recognition of musical gestures.

3. Once existing algorithms have been evaluated, to develop new algorithms specifi-

cally for musician-computer interaction should they be required.

169

Chapter 8. Conclusion 170

4. Develop software tools that can facilitate real-time musician-computer interaction

for any user; even those with no knowledge of machine learning or who have limited

computer skills.

8.0.1 Objective 1

This thesis has proposed that the application of machine learning for the recognition of

musical gestures requires a paradigm shift from the traditional training, testing, deploy-

ment and evaluation strategies used throughout other areas of HCI. Chapter 3 proposed

that the goal of a gesture recognition system for MCI, particularly in a live performance

scenario, should be to achieve a low intra-personal generalisation error, as opposed to

the low inter-personal generalisation error goal that is common in other areas of HCI.

This user-specific generalisation goal was proposed due to the three main aspects that

differentiate a gesture recognition system for MCI from that within other areas of HCI

- namely, the ambiguous input to a recognition system, the uncertainty of what the

recognition system will be controlling combined with the user-specific gestural vocab-

ularies that can be found throughout MCI. The requirement for a user-configurable

recognition system for MCI therefore inspired the design criteria for a recognition sys-

tem that should have a middleware design architecture (and thus not be dependent on

any one piece of audio hardware or software), be completely user-configurable and also

have the functionality to be quickly trained with examples from the user’s own gestural

vocabulary.

8.0.2 Objective 2 & 3

The design, development and deployment strategies for a gesture recognition system for

MCI outlined in chapter 3 also inspired us to test the intra-generalisation abilities of the

existing classification algorithms in the machine learning literature. It was found that

many of the existing classification algorithms did not meet the requirements set out in

chapter 3.2, i.e. they could not work with any N -dimensional signal, could not classify

a gesture from a continuous stream of data that also contained non-gestural data or

could not be trained with a limited number of training examples. A large part of the

work in this thesis has therefore been to extend a number of existing algorithms, such

as Hidden Markov Models, Support Vector Machines and Dynamic Time Warping, to

enable the algorithms to be used for MCI. As an existing algorithm that enabled the

adaptive classification of semiotic musical gestures could not be found, a novel algorithm

called the Adaptive Näıve Bayes Classifier was developed which can be found in chapter

4.

Chapter 8. Conclusion 171

The experiments documented in chapters 4 to chapters 7, have shown some interest-

ing results for MCI. The results of the Air Makoto study in chapter 4 suggest that

the classification abilities of the ANBC algorithm are significantly improved when the

adaptive online training function is used. The classification results of the multivari-

ate temporal recognition algorithms in chapters 5, 6 and 7 have shown that all three

modified algorithms achieved excellent classification results when a gesture has been pre-

segmented, with N -Dimensional Dynamic Time Warping and Support Vector Machines

both achieving an ACVR result of 99%. The ND-DTW algorithm was also successful

at classifying a number of multivariate temporal gestures from a continuous stream of

data that contained null gestures. This is a significant achievement as the challenge of

‘gesture spotting’ is one area of research across many areas within HCI that has seen

little progress despite numerous attempts at solving the problem (Junker et al., 2008b).

The addition of a classification threshold to all of the algorithms presented throughout

this thesis has therefore been our contribution to solving a problem which has particular

relevance for the classification of temporal gestures for MCI within the context of a live

performance context.

8.0.3 Objective 4

Finally, the SEC and all of the algorithms encapsulated within it has provided a novel

software tool that enables a musician, regardless of their technical skills or prior knowl-

edge of machine learning, to use a number of powerful machine learning algorithms to

recognise their musical gestures in real-time.

8.1 Research Contributions

This thesis has made the following contributions to the field of musician-computer in-

teraction:

- Definition of Musician-Computer Interaction

This thesis defined the term musician-computer interaction as a specific sub-

field of the larger research area of HCI. MCI was defined to help differentiate the

design and research goals for musical interaction from that of other areas of HCI.

This is because music provides a number of interesting research and design chal-

lenges over and above the more general field of HCI as, due to its real-time musical

application, a low-latency highly robust user-configurable system is required. This

definition can be found in chapter 3.1.

Chapter 8. Conclusion 172

- Adopting A Machine Learning Approach For MCI

This thesis presented the motivations for a performer to adopt a machine learning

approach to enable the automatic recognition of musical gestures to be used for

MCI. Chapter 3 proposed that the application of machine learning for the recog-

nition of musical gestures requires a paradigm shift from the common training,

testing, deployment and evaluation strategies used throughout other areas of HCI

that also use gesture recognition. Evidence was presented that the goal of a gesture

recognition system for MCI should be to achieve a low intra-personal generalisation

error, as opposed to the inter-personal generalisation error goal that is common

in other areas of HCI. The MCI machine learning design, development and de-

ployment strategies were then applied to create a design criteria for a recognition

system for musical gestures which in turn provided the motivation for a new soft-

ware tool to enable the recognition of discrete gestures for MCI. These arguments

can be found in chapter 3.1.3.

- Recognition of Static Musical Gestures

This thesis presented a novel algorithm called the Adaptive Näıve Bayes Clas-

sifier (ANBC) which can be used for the recognition of static musical gestures.

The ANBC algorithm has five significant advantages for the classification of static

musical gestures:

1. The input to the ANBC algorithm consists of an N -dimensional vector, re-

sulting that the input to the algorithm has not been constrained to only work

with one type of sensor, such as a mouse or camera.

2. An N -dimensional weighting coefficients vector enables the user to specify

which of the N dimensions of input data are salient for a particular ges-

ture. This enables one general classifier to be used in scenarios were several

classifiers would have been required.

3. The ANBC algorithm can be rapidly trained with a small number of training

examples.

4. The ANBC algorithm can be used to recognise static musical gestures in a

continuous stream of data that may also contain non-gestural data without

having to first train a null-model, such as a noise model that is used in speech

recognition.

5. The ANBC algorithm can automatically adapt itself as a performer adapts

their own gestures over, for example, the course of a rehearsal period.

The ANBC algorithm can be found in chapter 4.

Chapter 8. Conclusion 173

- Recognition of Multivariate Temporal Musical Gestures

This thesis has made some significant contributions to the discrete classification of

multivariate temporal gestures for both MCI and for the wider HCI community.

Three existing machine learning algorithms have been specifically adapted for the

recognition of musical gestures. Each algorithm has been extended to:

1. Classify any N -dimensional signal.

2. Be rapidly trained with a small number of training examples.

3. Recognise temporal musical gestures in a continuous stream of data that may

also contain non-gestural data without having to first train a null-model.

These machine learning algorithms included Hidden Markov Models, Support

Vector Machines and Dynamic Time Warping. Each algorithm was tested

using a specifically captured data set of temporal musical gestures with all three

modified algorithms achieving excellent recognition results, some even achieving

100% recognition for specific participants and 99% on average across all ten partici-

pants. The advantages and disadvantages of each algorithm have been summarized

for their potential application in MCI. The algorithms, results and summaries can

be found in chapters 5 to 7.

- A Flexible Gesture Recognition System For MCI

One of the major contributions of this thesis is that all of the algorithms developed,

design concepts proposed and training strategies suggested have all been encap-

sulated within the SEC, a highly flexible and user-configurable machine learning

toolbox that enables composers, performers and researchers to actually use this

work to recognise their musical gestures. The algorithms within the SEC, which

was presented in chapter 3.3, have been designed to operate independently from

any one specific piece of sensor device or audio software. The SECs’ main advan-

tage for MCI is that it enables any performer, regardless of their programming

abilities, to quickly train a computer to recognise their musical gestures using a

number of powerful machine learning algorithms. The flexible middleware design of

the SEC facilitates even a performer with the most rudimentary technical skills to

quickly adapt an example patch that has been designed using the two-dimensional

input of a mouse for example and replace this with the N -dimensional input of

the user’s own sensor device. The user can then quickly retrain the machine learn-

ing algorithm at the core of the adapted patch and then use this trained model

to recognise their musical gestures. The modular design of each pre-processing

function, machine learning algorithm and post-processing function enables a user

with a higher level of technical skills or knowledge of machine learning to fully

Chapter 8. Conclusion 174

customise their own recognition system. EyesWeb also enables researchers or per-

formers with more advanced technical skills to create their own blocks if they want

to test a new form of feature extraction or recognition algorithm and quickly in-

tegrate this with some of the SEC or EyesWeb blocks. This is a useful feature for

the application of the SEC blocks in future research as a number of researchers

may want to test the applicability of a new feature extraction method as input

to a standard machine learning algorithm, such as a Hidden Markov Model or

Support Vector Machine. EyesWeb and the SEC facilitates a researcher to quickly

test their new feature extraction algorithm in a real-time scenario without having

to first create an online recognition system or develop common machine learning

algorithms such as an HMM or SVM from scratch. The modular design of each

algorithm facilitates a researcher to integrate their own feature extraction algo-

rithm as an individual block within EyesWeb, which can then be easily connected

to any of the SEC machine learning algorithms.

8.2 Future Research

8.2.1 Continuous Real-Time Recognition

Out of the four algorithms presented in this thesis, only two (the ANBC and ND-DTW

algorithms) were successful at recognising a gesture from a continuous stream of real-time

data that also contains non-gestural data. The HMM algorithm, for example, achieved

an ACCR value of 87.53% on pre-segmented gestures but achieved a poor ACCR value

of 44.80% on the same gestures in a continuous stream of data. The SVMs performance

was perhaps even more disappointing, as although it achieved an excellent ACVR value

of 99.28% on the pre-segmented data, it only achieved an ACCR result of 38.88% on the

same gestures in a continuous stream of data. The SVMs main error was in classifying

gesture i as a null-gesture (i.e. it had a high recall error), however, the algorithm did

achieve an excellent average precision ratio of 0.96 and also achieved an excellent ANRR

value of 0.97. These results indicate that the algorithm performed well at rejecting null

gestures and also performed well at not misclassifying gesture i as gesture j. It may be

the case then that the SVM algorithm can classify a number of multivariate temporal

gestures from a continuous stream of data if it gets enough training data to create a

robust generalisable model. This should receive further investigation as the SVM is a

powerful recognition algorithm and it would be beneficial for MCI if it can be used for

the real-time recognition of multivariate temporal gestures from a continuous stream of

data that may also contain null gestures.

Chapter 8. Conclusion 175

8.2.2 Coherent Classification Feedback

One of the key observations commonly found in the real-time application of the algo-

rithms in this thesis through both live performances, installations and experiments is

the importance and necessity of coherent classification feedback. This is the feedback,

such as audio or visual, that informs the user about what the recognition system thinks

the user is trying, or importantly not trying, to do. This is particularly salient for

performer’s playing a virtual musical instrument who desire fine-grain control as they

lack the common forms of feedback and reference points, such as frets, strings or keys,

that can be found in most digital and acoustic musical instruments. Kratz and Balla-

gas (2009) found, for example, that simply by adding visual feedback (in the form of

a filtered waveform representing the user’s most recent gesture) improved recognition

rates by over 34%. Recognition rates improved by such a significant amount because the

visual feedback enabled the users to understand any sensor inaccuracies or uncertainties

in the recognition system. This feedback then allowed the user to adapt their movements

to overcome any inaccuracies or uncertainties in the recognition system.

8.3 Concluding Remarks

The predominant driving motivation for the work in this dissertation has been the goal

of making gestural interaction as viable an interaction paradigm between a musician and

a computer as it currently is between two performers. It was shown that, by adopting

a machine learning approach, a musician can quickly teach a machine to recognise their

musical gestures in the same way a performer might teach a new musician in an ensemble

the gestural vocabulary used by that group. By adopting a machine learning approach

a musician can simply ‘show a computer’ a number of examples of the movement the

performer wants to make and instruct the computer as to what should be triggered,

controlled or manipulated with that gesture. Although the work in this thesis has only

scratched the surface of the automatic recognition of musical gestures it has made some

significant contributions towards the use of gestures as an interaction medium between

a musician and a computer. Combining this work with the abundance of cheap novel

sensors and real-time audio software leads us towards exciting new interaction paradigms

facilitating a performer to use their own body movements to control a machine even when

their hands are busy playing an instrument.

Bibliography

Abe, S. (2005). Support vector machines for pattern classification. Springer-Verlag New

York Inc.

Abou-Moustafa, K. T., M. Cheriet, and C. Y. Suen (2004). On the structure of hidden

markov models. Pattern Recognition Letters 25 (8), 923–931.

Al-Muhtaseb, H. A., S. A. Mahmoud, and R. S. Qahwaji (2008). Recognition of off-line

printed arabic text using hidden markov models. Signal Processing 88 (12), 2902 –

2912.

Al-Rajab, M., D. Hogg, and K. Ng (2008). A comparative study on using zernike velocity

moments and hidden markov models for hand gesture recognition. Articulated Motion

and Deformable Objects, 319–327.

Angesleva, J., S. O’Modhrain, I. Oakley, and S. Hughes (2003). Body mnemonics. In

In: Mobile HCI Conference 2003.

Awaidah, S. M. and S. A. Mahmoud (2009). A multiple feature/resolution scheme to

arabic (indian) numerals recognition using hidden markov models. Signal Process-

ing 89 (6), 1176 – 1184.

Babu, R. V., S. Suresh, and A. Makur (2010). Online adaptive radial basis function net-

works for robust object tracking. Computer Vision and Image Understanding 114 (3),

297 – 310.

Bartlett, J. F. (2000, may/jun). Rock ’n’ scroll is here to stay [user interface]. Computer

Graphics and Applications, IEEE 20 (3), 40 –45.

Baum, L. and J. Eagon (1967). An inequality with applications to statistical estimation

for probabilistic functions of markov processes and to a model for ecology. Bull. Amer.

Math. Soc 73 (3), 360–363.

Baum, L. and G. Sell (1968). Growth transformations for functions on manifolds. Pacific

Journal of Mathematics 27 (2), 211–227.

176

Bibliography 177

Baum, L. E., T. Petrie, G. Soules, and N. Weiss (1970). A maximization technique

occurring in the statistical analysis of probabilistic functions of markov chains. The

Annals of Mathematical Statistics 41 (1), 164–171.

Benbasat, A. and J. Paradiso (2002). An inertial measurement framework for gesture

recognition and applications. In I. Wachsmuth and T. Sowa (Eds.), Gesture and

Sign Language in Human-Computer Interaction, Volume 2298 of Lecture Notes in

Computer Science, pp. 77–90. Springer Berlin / Heidelberg.

Benzeghiba, M., R. D. Mori, O. Deroo, S. Dupont, T. Erbes, D. Jouvet, L. Fissore,

P. Laface, A. Mertins, C. Ris, R. Rose, V. Tyagi, and C. Wellekens (2007). Automatic

speech recognition and speech variability: A review. Speech Communication 49 (10-

11), 763 – 786. Intrinsic Speech Variations.

Bertini, G. and P. Carosi (1993). Light baton system: A system for conducting computer

music performance. Journal of New Music Research 22 (3), 243–257.

Bettens, F. and T. Todoroff (2009). Real-time dtw-based gesture recognition external

object for max/msp and puredata. Proceedings of SMC 2009 - 6th Sound and Music

Computing Conference, 23-25 july 2009, Porto - Portugal .

Bevilacqua, F., F. Guédy, N. Schnell, E. Fléty, and N. Leroy (2007). Wireless sensor

interface and gesture-follower for music pedagogy. In NIME ’07: Proceedings of the

7th international conference on New interfaces for musical expression, New York, NY,

USA, pp. 124–129. ACM.

Bevilacqua, F., R. Muller, and N. Schnell (2005). Mnm: a max/msp mapping toolbox.

In Proceedings of the 2005 International Conference on New Interfaces for Musical

Expression (NIME05), Vancouver, BC, Canada.

Bevilacqua, F., B. Zamborlin, A. Sypniewski, N. Schnell, F. Guédy, and N. Rasami-

manana (2009). Continous realtime gesture following and recognition. Lecture Notes in

Cimputer Science (LNCS), Gesture Embodied Communication and Human-Computer

Interaction.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford: Oxford Uni-

versity Press.

Bishop, C. M. (2006). Pattern recognition and machine learning. Science and Business

Media, Springer.

Bolt, R. A. (1980, July). “put-that-there”: Voice and gesture at the graphics interface.

SIGGRAPH Comput. Graph. 14, 262–270.

Bibliography 178

Bradshaw, D. and K. Ng (2008). Analyzing a conductors gestures with the wiimote. In

Proceedings of EVA London 2008: the International Conference of Electronic Visual-

isation and the Arts, pp. 22–24.

Brecht, B. and G. Garnett (1995). Conductor follower. In Proceddings of the 21st.

International Computer Music Conference (ICMC), Baniff Canada.

Bruegge, B., C. Teschner, P. Lachenmaier, E. Fenzl, D. Schmidt, and S. Bierbaum

(2007). Pinocchio: conducting a virtual symphony orchestra. In Proceedings of the

international conference on Advances in computer entertainment technology, ACE ’07,

New York, NY, USA, pp. 294–295. ACM.

Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition.

Data Mining and Knowledge Discovery 2, 121–167.

Cadoz, C. (1988). Instrumental gesture and musical composition. In Proceedings of the

International Computer Music Conference, pp. 1–12.

Cadoz, C. and M. Wanderley (2000). Gesture-music. Trends in Gestural Control of

Music, 71–93.

Camurri, A., P. Coletta, A. Massari, B. Mazzarino, M. Peri, M. Ricchetti, A. Ricci, and

G. Volpe (2004). Toward real-time multimodal processing: Eyesweb 4.0. In Proc.

AISB.

Camurri, A., P. Coletta, G. Varni, and S. Ghisio (2007). Developing multimodal inter-

active systems with eyesweb xmi. In NIME07, pp. 305–308. ACM.

Camurri, A., B. Mazzarino, M. Ricchetti, R. Timmers, and G. Volpe (2004). Multi-

modal analysis of expressive gesture in music and dance performances. Gesture-based

communication in human-computer interaction, 357–358.

Camurri, A., G. Volpe, G. De Poli, and M. Leman (2005, jan.-march). Communicating

expressiveness and affect in multimodal interactive systems. Multimedia, IEEE 12 (1),

43 – 53.

Chang, C. and C. Lin (2001). LIBSVM: A library for support vector machines. Software

available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Chen, F. S., C. M. Fu, and C. L. Huang (2003). Hand gesture recognition using a real-

time tracking method and hidden markov models. Image and Vision Computing 21 (8),

745–758.

Cho, S., Y. Sung, R. Murray-Smith, K. Lee, C. Choi, and Y. Kim (2007). Dynamics of

tilt-based browsing on mobile devices. CHI .

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Bibliography 179

Christensen, C. (1968). An example of the manipulation of directed graphs in the

ambit/g programming language. Interactive Systems for Experimental Applied Math-

ematics.

Cont, A., T. Coduys, and C. Henry (2004). Real-time gesture mapping in pd environ-

ment using neural networks. In Proceedings of the 2004 Conference on New Interfaces

for Musical Expression (NIME04), Hamamatsu, Japan.

Cowie, R., E. Douglas-Cowie, N. Tsapatsoulis, G. Votsis, S. Kollias, W. Fellenz, and

J. Taylor (2001, January). Emotion recognition in human-computer interaction. IEEE

Signal Processing Magazine, 32–80.

Delalande, F. (1988). La gestique de gould. Glenn Gould Pluriel , 85–111.

Dillon, R., G. Wong, and R. Ang (2006). Virtual orchestra: An immersive computer

game for fun and education. In Proceedings of the 2006 international conference on

Game research and development, CyberGames ’06, Murdoch University, Australia,

Australia, pp. 215–218. Murdoch University.

Ding, H., G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh (2008). Querying and

mining of time series data: Experimental comparison of representations and distance

measures. Proceedings of the VLDB Endowment 1 (2), 1542–1552.

Dipietro, L., A. M. Sabatini, and P. Dario (2008, july). A survey of glove-based systems

and their applications. Systems, Man, and Cybernetics, Part C: Applications and

Reviews, IEEE Transactions on 38 (4), 461 –482.

Domingos, P. and M. Pazzani (1997). On the optimality of the simple bayesian classifier

under zero-one loss. Machine Learning 29, 103–130.

Duda, R. O., P. E. Hart, and D. G. Stork (2001). Pattern classification. Citeseer.

Ellis, T. O., J. F. Heafner, W. L. Sibley, and R. C. S. M. CALIF. (1969). The grail

project: An experiment In man-machine communications. Rand.

Ergovic, V., S. Tonkovic, and V. Medved (2009). Human gait data mining by symbol

based descriptive features. In World Congress on Medical Physics and Biomedical

Engineering, September 7-12, 2009, Munich, Germany, pp. 460–463. Springer.

Erol, A., G. Bebis, M. Nicolescu, R. D. Boyle, and X. Twombly (2007). Vision-based

hand pose estimation: A review. Computer Vision and Image Understanding 108 (1-

2), 52 – 73. Special Issue on Vision for Human-Computer Interaction.

Eslambolchilar, P., J. Williamson, and R. Murray-Smith (2004). Multimodal feedback

for tilt controlled speed dependent automatic zooming. ACM Symposium on User

Interface Software and Technology .

Bibliography 180

Farella, E., S. O’Modhrain, L. Benini, and B. Ricco (2006). Gesture signature for

ambient intelligence applications: A feasibility study. PERVASIVE 2006 .

Fels, S. (1995). Glove-talkii: A neural network interface which maps gestures to parallel

formant speech synthesizer controls. CHI’95 .

Fiebrink, R. (2011). Real-time human interaction with supervised learning algorithms

for music composition and performance. Ph. D. thesis, School of Computer Science,

Princeton University.

Fiebrink, R., P. R. Cook, and D. Trueman (2009). Play-along mapping of musical

controllers. The 2009 International Computer Music Conference (ICMC).

Fiebrink, R., D. Trueman, and P. R. Cook (2009). A meta-instrument for interactive,

on -the-fly machine learning. NIME09 .

Fitz-Walter, Z., S. Jones, and D. Tjondronegoro (2008). Detecting gesture force peaks for

intuitive interaction. In Proceedings of the 5th Australasian Conference on Interactive

Entertainment, IE ’08, New York, NY, USA, pp. 2:1–2:8. ACM.

Forbes, K. and E. Fiume (2005). An efficient search algorithm for motion data using

weighted pca. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium

on Computer animation, pp. 76. ACM.

Freeman, W. and C. Weissman (1995). Television control by hand gestures. In Proc. of

Intl. Workshop on Automatic Face and Gesture Recognition, pp. 179–183. Citeseer.

Friberg, A. (2005). Home conducting: Control the overall musical expression with ges-

tures. In Proceedings of the 2005 International Computer Music Conference, pp.

479–482.

Gibet, S. (1987). Codage, représentation et traitement du geste instrumental: Appli-

cation à la synthèse de sons musicaux par simulation de mécanismes instrumentaux.

Ph. D. thesis, Institut National Polytechnique de Grenoble, Institut de Mathématiques

Appliquées de Grenoble.

Gillian, N., R. B. Knapp, and S. O’Modhrain (2011a). An adaptive classification algo-

rithm for semiotic musical gestures. In the 8th Sound and Music Computing Confer-

ence (SCM2011), Padova, Italy.

Gillian, N., R. B. Knapp, and S. O’Modhrain (2011b). A machine learning toolbox for

musician computer interaction. In Proceedings of the 2011 International Coference on

New Interfaces for Musical Expression (NIME11), Oslo, Norway.

Bibliography 181

Gillian, N., R. B. Knapp, and S. O’Modhrain (2011c). Recognition of multivariate

temporal musical gestures using n-dimensional dynamic time warping. In Proceed-

ings of the 2011 International Coference on New Interfaces for Musical Expression

(NIME11), Oslo, Norway.

Gillian, N., S. O’Modhrain, and G. Essl (2009). Scratch-off: A gesture based mobile

music game with tactile feedback. In Proceedings of the 2009 Conference on New

Interfaces for Musical Expression (NIME09), Pittsburgh, USA.

Hall, M., E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten (2009).

The weka data mining software: An update. ACM SIGKDD Explorations Newslet-

ter 11 (1), 10–18.

Harrison, B. L., K. P. Fishkin, A. Gujar, C. Mochon, and R. Want (1998). Squeeze hold

tilt me! an exploration of manipulative user interfaces. In Proceedings of the SIGCHI

conference on Human factors in computing systems, CHI ’98, New York, NY, USA,

pp. 17–24. ACM Press/Addison-Wesley Publishing Co.

Hashimoto, S. (1997). Kansei as the third target of information processing and related

topics in japan. In Proceedings of the International Workshop on “KANSEI: The tech-

nology of emotion”, AIMI (Italian Computer Music Association) and DIST-University

of Genova, pp101-104.

Heloir, A., N. Courty, S. Gibet, and F. Multon (2006). Temporal alignment of commu-

nicative gesture sequences. Computer Animation and Virtual Worlds 17 (3-4), 347.

Hinckley, K., J. Pierce, M. Sinclair, and E. Horvitz (2000). Sensing techniques for mobile

interaction. In Proceedings of the 13th annual ACM symposium on User interface

software and technology, UIST ’00, New York, NY, USA, pp. 91–100. ACM.

Hofer, A., A. Hadjakos, and M. Muhlhauser (2009). Gyroscope-based conducting gesture

recognition. In Proceedings of the 2009 Conference on New Interfaces for Musical

Expression (NIME09).

Hoffman, M., P. Varcholik, and J. J. LaViola (2010). Breaking the status quo: Improving

3d gesture recognition with spatially convenient input devices. In Virtual Reality

Conference (VR), 2010 IEEE, pp. 59–66. IEEE.

Ilmonen, T. (2003). Tools and experiments in multimodal interaction. System 11 (2),

240–247.

Inoue, T., R. Nakagawa, M. Kondou, T. Koga, and K. Shinohara (2011). Discrimina-

tion between mothers’ infant-and adult-directed speech using hidden markov models.

Neuroscience Research.

Bibliography 182

Itakura, F. (1990). Minimum prediction residual principle applied to speech recognition.

Readings in speech recognition, 154.

Jensenius, A. R., M. M. Wanderley, R. I. Godøy, and M. Leman (2009). Gestural

affordances of musical sound. Routledge.

Junker, H., O. Amft, P. Lukowicz, and G. Troster (2008a). Gesture spotting with body-

worn inertial sensors to detect user activities. Pattern Recognition 41 (6), 2010–2024.

Junker, H., O. Amft, P. Lukowicz, and G. Troster (2008b). Gesture spotting with body-

worn inertial sensors to detect user activities. Pattern Recognition 41 (6), 2010–2024.

Just, A. and S. Marcel (2009). A comparative study of two state-of-the-art sequence

processing techniques for hand gesture recognition. Computer Vision and Image Un-

derstanding 113 (4), 532–543.

Karam, M. (2006, November). A framework for research and design of gesture-based

human computer interactions. Ph. D. thesis, Faculty of Engineering, Science and

Mathematics, School of Electronics and Computer Science.

Kasten, E. P., P. K. McKinley, and S. H. Cage (2007). Automated ensemble extraction

and analysis of acoustic data streams. Proceedings of the First International Workshop

on Distributed Event Processing, Systems and Applications (DEPSA), in conjunction

with ICDCS 2007, Toronto, Ontario Canada, June.

Keir, P., J. Payne, J. Elgoyhen, M. Horner, M. Naef, and P. Anderson (2006, march).

Gesture-recognition with non-referenced tracking. In 3D User Interfaces, 2006. 3DUI

2006. IEEE Symposium on, pp. 151 – 158.

Kendon, A. (2004). Gesture: Visible action as utterance. Cambridge Univ Pr.

Keogh, E. and C. A. Ratanamahatana (2005). Exact indexing of dynamic time warping.

Knowledge and Information Systems 7 (3), 358–386.

Keogh, E. J. and M. J. Pazzani (2000). Scaling up dynamic time warping for datamining

applications. In Proceedings of the sixth ACM SIGKDD international conference on

Knowledge discovery and data mining, pp. 285–289. ACM.

Keogh, E. J. and M. J. Pazzani (2001). Derivative dynamic time warping. In First

SIAM international conference on data mining. Citeseer.

Kim, J., S. Mastnik, and E. André (2008). Emg-based hand gesture recognition for

realtime biosignal interfacing. Proc ACM IUI 08, 30 39.

Ko, M., G. West, S. Venkatesh, and M. Kumar (2008). Using dynamic time warping for

online temporal fusion in multisensor systems. Information Fusion 9 (3), 370–388.

Bibliography 183

Kolesnik, P. and M. Wanderley (2004). Recognition, analysis and performance with

expressive conducting gestures. In Proceedings of the International Computer Music

Conference.

Kong, A., D. Zhang, and M. Kamel (2009). A survey of palmprint recognition. Pattern

Recognition 42 (7), 1408 – 1418.

Kratz, L., M. Smith, and F. J. Lee (2007). Wiizards: 3d gesture recognition for game

play input. In Proceedings of the 2007 conference on Future Play, Future Play ’07,

New York, NY, USA, pp. 209–212. ACM.

Kratz, S. and R. Ballagas (2009). Unravelling seams: improvoing mobile gesture recog-

nition with visual feedback techniques. In Proceedings of the 27th international con-

ference on Human factors in computing systems, CHI ’09, New York, NY, USA, pp.

937–940. ACM.

Kratz, S. and M. Rohs (2010). The $3 recognizer: simple 3d gesture recognition on

mobile devices. In Proceeding of the 14th international conference on Intelligent user

interfaces, IUI ’10, New York, NY, USA, pp. 419–420. ACM.

Kurtenbach, G. and E. Hulteen (1990, May). The Art and science of interface design.

Gestures in Human-Computer Communication. Addison-Wesley Publishing Co.

Lee, J. C. (2008, July). Hacking the nintendo wii remote. IEEE Pervasive Computing 7,

39–45.

Lee, M., A. Freed, and D. Wessel (1992). Neural networks for simultaneous classifi-

cation and parameter estimation in musical instrument control. Adaptive Learning

Systems 1706, 244–255.

Lemire, D. (2009). Faster retrieval with a two-pass dynamic-time-warping lower bound.

Pattern Recognition 42 (9), 2169–2180.

Leong, T. S., J. Lai, J. Panza, P. Pong, and J. Hong (2009). Wii want to write: An ac-

celerometer based gesture recognition system. In International Conference on Recent

and Emerging Advanced Technologies in Engineering.

Li, Y. (2010). Protractor: A fast and accurate gesture recognizer. In Proceedings of the

28th international conference on Human factors in computing systems, CHI ’10, New

York, NY, USA, pp. 2169–2172. ACM.

Li, Y. and R. Anderson-Sprecher (2006). Facies identification from well logs: A compar-

ison of discriminant analysis and näıve bayes classifier. Journal of Petroleum Science

and Engineering 53 (3-4), 149 – 157.

Bibliography 184

Licsar, A. and T. Sziranyi (2005). User-adaptive hand gesture recognition system with

interactive training. Image and Vision Computing 23 (12), 1102 – 1114.

Lin, H., C. Lin, and R. Weng (2007). A note on platt’s probabilistic outputs for support

vector machines. Machine Learning 68 (3), 267–276.

Lin, J., E. Keogh, S. Lonardi, and B. Chiu (2003). A symbolic representation of time

series with implications for streaming algorithms. In Proceedings of the 8th ACM

SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery .

Lin, J., E. Keogh, L. Wei, and S. Lonardi (2007). Experiencing sax: A novel symbolic

representation of time series. Data Mining and Knowledge Discovery 15, 107–144.

Liu, J., L. Zhong, J. Wickramasuriya, and V. Vasudevan (2009). uwave: Accelerometer-

based personalized gesture recognition and its applications. Pervasive and Mobile

Computing 5 (6), 657 – 675. PerCom 2009.

Liu, M. (2010). Fingerprint classification based on adaboost learning from singularity

features. Pattern Recognition 43 (3), 1062 – 1070.

Lu, S., D. Chiang, H. Keh, and H. Huang (2010). Chinese text classification by the

näıve bayes classifier and the associative classifier with multiple confidence threshold

values. Knowledge-Based Systems.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate ob-

servations. In Proceedings of the fifth Berkeley symposium on mathematical statistics

and probability, Number 281-297 in 1, pp. 14. California, USA.

Marrin, T. (1996). Toward an understanding of musical gesture: Maping expressive

intention with the digital baton. Ph. D. thesis, Massachusetts Institute of Technology.

Mathews, M. V. (1991a). The radio baton and conductor program, or: Pitch, the most

important and least expressive part of music. Computer Music Journal , 37–46.

Mathews, M. V. (1991b). The radio baton and conductor program, or: Pitch, the most

important and least expressive part of music. Computer Music Journal , 37–46.

McNeill, D. (1992). Hand and mind. University of Chicago Press.

McNeill, D. (2000). Language and gesture. Cambridge University Press Cambridge, UK.

Merrill, D. J. and J. A. Paradiso (2005). Personalization, expressivity, and learnability

of an implicit mapping strategy for physical interfaces. Proceedings of CHI 2005

Conference on Human Factors in Computing Systems.

Bibliography 185

Mitra, S. and T. Acharya (2007). Gesture recognition: A survey. Systems, Man, and

Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 37 (3), 311–

324.

Modler, P., T. Myatt, and M. Saup (2003). An experimental set of hand gestures

for expressive control of musical parameters in realtime. In Proceedings of the 2003

conference on New interfaces for musical expression, NIME ’03, Singapore, Singapore,

pp. 146–150. National University of Singapore.

Moeslund, T. B., A. Hilton, and V. Kruger (2006). A survey of advances in vision-

based human motion capture and analysis. Computer Vision and Image Understand-

ing 104 (2-3), 90 – 126. Special Issue on Modeling People: Vision-based understanding

of a person’s shape, appearance, movement and behaviour.

Morales-Mazanares, R., E. F. Morales, and D. Wessel (2005). Combining audio and

gesture for a real-time improviser. in International Computer Music Conference,

(Barcelona, 2005), ICMA.

Mori, S., C. Suen, and K. Yamamoto (1992, jul). Historical review of ocr research and

development. Proceedings of the IEEE 80 (7), 1029 –1058.

Morita, H., S. Hashimoto, and S. Ohteru (1991). A computer music system that follows

a human conductor. Computer 24, 44–53.

Mulder, A. (1994). Virtual musical instruments: Accessing the sound synthesis universe

as a performer. In Proceedings of the First Brazilian Symposium on Computer Music,

pp. 243–250. Citeseer.

Mulder, A. (2000). Towards a choice of gestural constraints for instrumental performers.

Trends in Gestural Control of Music.

Murphy, D., T. H. Andersen, and K. Jensen (2004). Conducting audio files via computer

vision. In Gesture-Based Communication in Human-Computer Interaction, Volume

2915 of Lecture Notes in Computer Science, pp. 101–102. Springer Berlin / Heidelberg.

Murray-Smith, R. and S. Strachan (2008). Rotional dynamics for design of bidirectional

feedback during manual interaction. Fun and Games, 1–10.

Nakra, T. M. (1999). Inside the conductor’s jacket: Analysis, interpretation and musical

synthesis of expressive gesture. Ph. D. thesis, Massachusetts Institute of Technology.

Nash, C. and A. Blackwell (2008). Realtime representation and gestural control of

musical polytempi. Proceedings of the 2008 Conference on New Interfaces for Musical

Expression (NIME08), 28–33.

Bibliography 186

O’Modhrain, S. (2004). Touch and godesigning haptic feedback for a hand-held mobile

device. BT technology journal 22 (4), 139–145.

Overholt, D., J. Thompson, L. Putnam, B. Bell, J. Kleban, B. Sturm, and J. Kuchera-

Morin (2009). A multimodal system for gesture recognition in interactive music per-

formance. Computer Music Journal 33 (4), 69–82.

Park, C. and S. Lee (2011). Real-time 3d pointing gesture recognition for mobile robots

with cascade hmm and particle filter. Image and Vision Computing 29 (1), 51 – 63.

Patel, K., N. Bancroft, S. M. Drucker, J. Fogarty, A. J. Ko, and J. Landay (2010).

Gestalt: integrated support for implementation and analysis in machine learning.

In Proceedings of the 23nd annual ACM symposium on User interface software and

technology, UIST ’10, New York, NY, USA, pp. 37–46. ACM.

Patel, S. N., J. S. Pierce, and G. D. Abowd (2004). A gesture-based authentication

scheme for untrusted public terminals. In Proceedings of the 17th annual ACM sym-

posium on User interface software and technology, UIST ’04, New York, NY, USA,

pp. 157–160. ACM.

Plamondon, R. and S. Srihari (2000, jan). Online and off-line handwriting recognition: a

comprehensive survey. Pattern Analysis and Machine Intelligence, IEEE Transactions

on 22 (1), 63 –84.

Platt, J. C. (1999). Probabilistic outputs for support vector machines and comparison

to regularized likelihood methods. Advances in Large Margin Classifiers, 61–74.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (2007). Numerical

recipes: the art of scientific computing. Cambridge Univ Pr.

Pritchard, B. and S. Fels (2006). Grassp: Gesturally-realized audio, speech and song

performance. Proceedings of the 2006 International Coference on New Interfaces for

Musical Expression (NIME06), 272–271.

Pylvänäinen, T. (2005). Accelerometer based gesture recognition using continuous

hmms. Pattern Recognition and Image Analysis, 639–646.

Quek, F. K. H. (1994). Toward a vision-based hand gesture interface. In Proceedings of

the conference on Virtual reality software and technology, River Edge, NJ, USA, pp.

17–31. World Scientific Publishing Co., Inc.

Rabiner, L. R. (1989). A tutorial on hidden markov models and selected applications in

speech recognition. in Proceedings of the IEEE 77, 257–286.

Bibliography 187

Rasamimanana, N., E. Fléty, and F. Bevilacqua (2006). Gesture analysis of violin bow

strokes. Gesture in Human-Computer Interaction and Simulation, 145–155.

Rehm, M., N. Bee, and E. André (2008). Wave like an egyptian: accelerometer based

gesture recognition for culture specific interactions. In Proceedings of the 22nd British

HCI Group Annual Conference on People and Computers: Culture, Creativity, In-

teraction - Volume 1, BCS-HCI ’08, Swinton, UK, UK, pp. 13–22. British Computer

Society.

Rimé, B. and L. Schiaratura (1991). Gesture and speech.

Rish, I. (2001). An empirical study of the näıve bayes classifier. In IJCAI-01 workshop

on ”Empirical Methods in AI”.

Sakoe, H. and S. Chiba (1990). Dynamic programming algorithm optimization for spoken

word recognition. Readings in speech recognition, 159.

Salvador, S. and P. Chan (2007). Toward accurate dynamic time warping in linear time

and space. Intelligent Data Analysis 11 (5), 561–580.

Savage, N. S., S. R. Ali, and N. E. Chavez (2010). Mmmmm: A multi-modal mobile

music mixer. In Proceedings of the 2010 Conference on New Interfaces for Musical

Expression (NIME10), Syndey, Australia.

Sawada, H. and S. Hashimoto (1997). Gesture recognition using an acceleration sensor

and its application to musical performance control. Electronics and Communications

in Japan (Part III: Fundamental Electronic Science) 80 (5), 9–17.

Sebe, N., M. S. Lew, I. Cohen, A. Garg, and T. S. Huang (2002). Emotion recognition

using a cauchy näıve bayes classifier. Pattern Recognition, International Conference

on 1, 10017.

Sreedharan, S., E. S. Zurita, and B. Plimmer (2007). 3d input for 3d worlds. In Pro-

ceedings of the 19th Australasian conference on Computer-Human Interaction: Enter-

taining User Interfaces, OZCHI ’07, New York, NY, USA, pp. 227–230. ACM.

Stettiner, Y., D. Malah, and D. Chazan (1994). Dynamic time warping with path

control and non-local cost. In Proceedings of the 12th IAPR International Conference

on Pattern Recognition, 1994. Vol. 3-Conference C: Signal Processing, pp. 174–177.

Strachan, S., R. Murray-Smith, and S. O’Modhrain (2007). Bodyspace: Inferring body

pose for natural control of a music player. CHI .

Sturman, D. J. and D. Zeltzer (2002). A survey of glove-based input. Computer Graphics

and Applications, IEEE 14 (1), 30–39.

Bibliography 188

Sturman, D. J., D. Zeltzer, and S. Pieper (1989). Hands-on interaction with virtual

environments. In Proceedings of the 2nd annual ACM SIGGRAPH symposium on

User interface software and technology, UIST ’89, New York, NY, USA, pp. 19–24.

ACM.

Sutherland, I. E. (1964). Sketch pad a man-machine graphical communication system.

In Proceedings of the SHARE design automation workshop, pp. 6–329. ACM.

Tanaka, A. and R. B. Knapp (2002). Multimodal interaction in music using the elec-

tromyogram and relative position sensing. In NIME ’02: Proceedings of the 2002

conference on New interfaces for musical expression, Singapore, Singapore, pp. 1–6.

National University of Singapore.

Tarabella, L. (2005). Handel, a free-hands gesture recognition system. In U. K. Wiil

(Ed.), Computer Music Modeling and Retrieval, Volume 3310 of Lecture Notes in

Computer Science, pp. 139–148. Springer Berlin / Heidelberg.

Teitelman, W. (1964). Real time recognition of hand-drawn characters. In Proceedings

of the October 27-29, 1964, fall joint computer conference, part I, AFIPS ’64 (Fall,

part I), New York, NY, USA, pp. 559–575. ACM.

ten Holt, G. A., M. J. T. Reinders, and E. A. Hendriks (2007). Multi-dimensional

dynamic time warping for gesture recognition. In Thirteenth annual conference of the

Advanced School for Computing and Imaging.

Turner, D. (2007). The nintendo wii: A game console with underwhelming graphics

wins with neat controllers. TECHNOLOGY REVIEW-MANCHESTER NH- 110 (4),

22.

Vlachos, M., M. Hadjieleftheriou, D. Gunopulos, and E. Keogh (2003). Indexing multi-

dimensional time-series with support for multiple distance measures. Proceedings of

the 9th ACM SIGKDD int. conf. on Knowledge discovery and data mining .

Vuori, V., J. Laaksonen, E. Oja, and J. Kangas (2001). Experiments with adaptation

strategies for a prototype-based recognition system for isolated handwritten charac-

ters. International Journal on Document Analysis and Recognition 3, 150–159.

Wachs, J. P., M. Kölsch, H. Stern, and Y. Edan (2011, February). Vision-based hand-

gesture applications. Commun. ACM 54, 60–71.

Waisvisz, M. (1985). The hands, a set of remote midi-controllers. In Proceedings of the

International Computer Music Conference, pp. 313–318.

Wanderley, M. and M. Battier (Eds.) (2000). Trends in gestural control of music. Ircam

- Centre Pompidou.

Bibliography 189

Wanderley, M. and P. Depalle (2004a). Gestural control of sound synthesis. Proceedings

of the IEEE 92 (4), 632–644.

Wanderley, M. M. (1999). Non-obvious performer gestures in instrumental music.

Gesture-based communication in human-computer interaction, 37–48.

Wanderley, M. M. and P. Depalle (2004b). Gestural control of sound synthesis. Pro-

ceedings of the IEEE 92 (4), 632–644.

Wang, C., Z. Liu, and S. Fels (2010). Everyone can do magic: An interactive game with

speech and gesture recognition. In H. Yang, R. Malaka, J. Hoshino, and J. Han (Eds.),

Entertainment Computing - ICEC 2010, Volume 6243 of Lecture Notes in Computer

Science, pp. 32–42. Springer Berlin / Heidelberg.

Ward, J. A., P. Lukowicz, and G. Troster (2005). Gesture spotting using wrist worn

microphone and 3-axis accelerometer. In Proceedings of the 2005 joint conference on

Smart objects and ambient intelligence: innovative context-aware services: usages and

technologies, pp. 99–104. ACM.

Wexelblat, A. (1995, September). An approach to natural gesture in virtual environ-

ments. ACM Trans. Comput.-Hum. Interact. 2, 179–200.

Whitehead, A. and K. Fox (2009). Device agnostic 3d gesture recognition using hidden

markov models. In Proceedings of the 2009 Conference on Future Play on@ GDC

Canada, pp. 29–30. ACM.

Williamson, J., R. Murray-Smith, and S. Hughes (2007). Shoogle: Excitatory multi-

modal interaction on mobile devices. Computer/Human Interaction.

Wilson, A. D. and A. F. Bobick (2000). Realtime online adaptive gesture recognition. In

Pattern Recognition, 2000. Proceedings. 15th International Conference on, Volume 1,

pp. 270 –275 vol.1.

Wobbrock, J. O., A. D. Wilson, and Y. Li (2007). Gestures without libraries, toolkits

or training: a $1 recognizer for user interface prototypes. In Proceedings of the 20th

annual ACM symposium on User interface software and technology, UIST ’07, New

York, NY, USA, pp. 159–168. ACM.

Wong, S. F. and R. Cipolla (2006). Continuous gesture recognition using a sparse

bayesian classifier. Pattern Recognition 1, 1084–1087.

Wong, T. and L. Chang (2011). Individual attribute prior setting methods for näıve

bayesian classifiers. Pattern Recognition 44 (5), 1041 – 1047.

Bibliography 190

Wright, M. and A. Freed (1997). Open sound control: A new protocol for communicating

with sound synthesizers. In International Computer Music Conference, Thessaloniki,

Hellas, pp. 101–104. International Computer Music Association.

Wu, J., G. Pan, D. Zhang, G. Qi, and S. Li (2009). Gesture recognition with a 3-

d accelerometer. In D. Zhang, M. Portmann, A.-H. Tan, and J. Indulska (Eds.),

Ubiquitous Intelligence and Computing, Volume 5585 of Lecture Notes in Computer

Science, pp. 25–38. Springer Berlin / Heidelberg.

Wullmer, M., M. Al-Hames, F. Eyben, B. Schuller, and G. Rigoll (2009). A multidimen-

sional dynamic time warping algorithm for efficient multimodal fusion of asynchronous

data streams. Neurocomputing .

Xi, X., E. Keogh, C. Shelton, L. Wei, and C. A. Ratanamahatana (2006). Fast time series

classification using numerosity reduction. In Proceedings of the 23rd international

conference on Machine learning, pp. 1040. ACM.

Yoon, H. S., J. Soh, Y. J. Bae, and H. Seung Yang (2001). Hand gesture recognition

using combined features of location, angle and velocity. Pattern Recognition 34 (7),

1491–1501.

Young, D. (2008). Classification of common violin bowing techniques using gesture data

from a playable measurement system. Proceedings of the 2008 Conference on New

Interfaces for Musical Expression (NIME08), 44–48.

Zhang, X. and Y. Gao (2009). Face recognition across pose: A review. Pattern Recog-

nition 42 (11), 2876 – 2896.

Zhao, L. and N. Badler (2001). Synthesis and acquisition of laban movement analy-

sis qualitative parameters for communicative gestures. University of Pennsylvania,

Philadelphia, PA.

Zhao, W., R. Chellappa, P. J. Phillips, and A. Rosenfeld (2003, December). Face recog-

nition: A literature survey. ACM Comput. Surv. 35, 399–458.

Zimmerman, T. G., J. Lanier, C. Blanchard, S. Bryson, and Y. Harvill (1986, May). A

hand gesture interface device. SIGCHI Bull. 17, 189–192.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Thesis Overview
	1.2 Research Questions, Aims and Objectives
	1.3 Thesis Contributions
	1.4 Thesis Outline

	2 Background and Related Work
	2.1 Machine Learning Fundamentals
	2.1.1 Types of Learning
	2.1.2 Training a Model
	2.1.3 Pre-processing
	2.1.4 Post-processing
	2.1.5 Underfitting, Overfitting and Model Selection
	2.1.6 Generalisation Error
	2.1.6.1 Cross-Validation
	2.1.6.2 Repeated Sub-Sampling Validation
	2.1.6.3 K-fold Cross-Validation
	2.1.6.4 Stratified Validation
	2.1.6.5 Cross Validation Error Measures

	2.1.7 Validation Methods used in this Thesis
	2.1.8 Applying Machine Learning to Gesture Recognition

	2.2 Gesture Recognition for Human Computer Interaction
	2.2.1 Glove Based Recognition Systems
	2.2.2 Computer-Vision Based Recognition Systems
	2.2.3 Inertial Measurement Unit Based Recognition Systems
	2.2.3.1 Custom Made IMU Recognition Systems
	2.2.3.2 IMU Recognition Algorithms

	2.2.4 Gesture Recognition for HCI Summary

	2.3 Gesture Recognition for Musician Computer Interaction
	2.4 Musical Gestures
	2.4.1 The Musical Gesture Spectrum
	2.4.2 Higher Order Recognition
	2.4.3 Musical Gestures Summary

	2.5 Summary

	3 Gesture Recognition Systems for Musician Computer Interaction
	3.1 Musician Computer Interaction
	3.1.1 Existing Commercial Interfaces
	3.1.2 New Interfaces for Musical Expression
	3.1.3 Gestural Interaction
	3.1.4 Teaching A Machine To Recognise Musical Gestures
	3.1.5 Adopting A Machine Learning Approach
	3.1.6 Applying Machine Learning To MCI

	3.2 Gesture Recognition Design Strategies For MCI
	3.2.1 Gesture Recognition Systems for HCI
	3.2.2 Gesture Recognition Systems for MCI
	3.2.3 The Intra-personal Generalisation Goal
	3.2.4 Fast Training, Fast Testing, Fast Prototyping
	3.2.5 The Bias-Variance Tradeoff
	3.2.6 Adaptive Models
	3.2.7 Error Tolerances
	3.2.8 Risk
	3.2.9 Validating An Intra-Personal Classification Algorithm
	3.2.10 Design Strategies Summary

	3.3 Creating a Gesture Recognition System for MCI
	3.3.1 The SEC
	3.3.2 The SEC Blocks
	3.3.3 Using the SEC for MCI
	3.3.4 Middleware Design Architecture
	3.3.5 Creating a Robust Recognition System
	3.3.6 Training a Machine Learning Algorithm

	3.4 Summary

	4 Recognition of Static Semiotic Musical Gestures
	4.1 Semiotic Gestures
	4.1.1 Semiotic Musical Gestures

	4.2 Designing A Classifier For Semiotic Musical Gestures
	4.3 Adaptive Naïve Bayes Classifier
	4.3.1 Bayes' Theory
	4.3.2 The Gaussian Density Function
	4.3.3 Adding a Weighting Coefficient For An N-Dimensional Model
	4.3.4 Real-World Computational Concerns
	4.3.5 Training The Gaussian Model
	4.3.6 Preventing Over-Fitting
	4.3.7 Classification Using The Gaussian Model
	4.3.8 Computing a Suitable Confidence Measure For Real-Time Recognition
	4.3.9 Computing a Rejection Threshold
	4.3.10 Adaptive Online Training
	4.3.11 Strengths and weaknesses of the ANBC algorithm

	4.4 Implementation of the ANBC algorithm in EyesWeb
	4.4.1 The ANBC Training Tool block
	4.4.2 The ANBC Train block
	4.4.3 The ANBC Predict block
	4.4.4 Summary of the ANBC block design

	4.5 Evaluating the ANBC Algorithm
	4.5.1 Air Makoto
	4.5.2 Hit Detection
	4.5.3 Location And Setup
	4.5.4 Participants
	4.5.5 Method
	4.5.5.1 Data Colletection Phase
	4.5.5.2 Practice Phase
	4.5.5.3 Game Phase
	4.5.5.4 ANBC Settings

	4.5.6 Results
	4.5.7 Discussion
	4.5.8 Conclusion

	4.6 Summary

	5 Recognition of Multivariate Temporal Musical Gestures
	5.1 Multivariate Temporal Gestures
	5.1.1 An Overview Of The Classification Problem
	5.1.2 The Performance Factor
	5.1.3 Gesture Segmentation
	5.1.3.1 Trigger Keys
	5.1.3.2 Sliding Windows
	5.1.3.3 Activity Detection
	5.1.3.4 Musical Segmentation Cues

	5.1.4 Multivariate Temporal Recognition Summary

	5.2 The Numbers-Shapes Data Set
	5.2.0.1 Location and Setup
	5.2.0.2 Participants
	5.2.0.3 Automatic Gesture Tagging
	5.2.0.4 Instructions
	5.2.0.5 Post-processing
	5.2.0.6 Error Measures Used For Testing

	5.3 Hidden Markov Models
	5.3.1 Vector Quantisation
	5.3.2 Vector Quantisation Using k-means Clustering
	5.3.2.1 Training the k-means Algorithm
	5.3.2.2 Quantisation using the k-means Algorithm

	5.3.3 Vector Quantisation Using SAX
	5.3.4 HMM Description
	5.3.5 HMM Components
	5.3.6 The Three Basic Problems for HMMs
	5.3.7 The Forward-Backward Algorithm
	5.3.7.1 The Alpha-Beta Algorithm
	5.3.7.2 The Forward Algorithm
	5.3.7.3 The Backward Algorithm

	5.3.8 The Baum-Welch Algorithm
	5.3.9 Model Types
	5.3.10 Scaling
	5.3.11 Batch Training
	5.3.12 Classification using the HMM Algorithm
	5.3.13 Calculating the Classification Threshold
	5.3.14 Laplace Smoothing

	5.4 HMM Experiments on Synthetic Data
	5.4.1 Evaluation of an HMMs Estimation Abilities
	5.4.1.1 Results & Discussion

	5.4.2 Evaluation of an HMMs Classification Abilities
	5.4.2.1 Results
	5.4.2.2 Discussion

	5.5 HMM Experiments on Real Data
	5.5.1 HMM Model Type Evaluation
	5.5.1.1 Results & Discussion

	5.5.2 HMM Number of States Evaluation
	5.5.2.1 Results & Discussion

	5.5.3 HMM Number of Symbols Evaluation
	5.5.3.1 Results & Discussion

	5.5.4 Evaluation of the SAX Alphabet Size
	5.5.4.1 Results & Discussion

	5.5.5 Evaluation of the SAX Frame Size
	5.5.5.1 Results & Discussion

	5.5.6 Evaluation of an HMMs Classification Abilities With Pre-Segmented Data
	5.5.6.1 Results
	5.5.6.2 Discussion

	5.5.7 Evaluation of a HMMs Classification Abilities With Continuous Data
	5.5.7.1 Results
	5.5.7.2 Discussion

	5.5.8 HMM Summary

	5.6 Summary

	6 Support Vector Machines
	6.1 Support Vector Machines
	6.1.1 SVM
	6.1.2 Mapping to a High-Dimensional Space
	6.1.3 Using Probabilistic Outputs For A Classification Threshold
	6.1.4 Using SVM to Classify Multivariate Temporal Data
	6.1.5 Time Domain Features
	6.1.6 Frequency Domain Features

	6.2 SVM Experiments
	6.2.1 SVM Experiment A
	6.2.1.1 Results
	6.2.1.2 Discussion

	6.2.2 SVM Experiment B
	6.2.2.1 Results & Discussion

	6.2.3 SVM Experiment C
	6.2.3.1 Results
	6.2.3.2 Discussion

	6.3 SVM Summary
	6.4 Summary

	7 Dynamic Time Warping
	7.1 Dynamic Time Warping
	7.1.1 Related Work
	7.1.2 One-Dimensional DTW
	7.1.3 Numerosity Reduction
	7.1.4 Constraining the Warping Path

	7.2 N-Dimensional Dynamic Time Warping
	7.2.1 Training the ND-DTW Algorithm
	7.2.2 Multi-Threaded Training
	7.2.3 Classification using the ND-DTW Algorithm
	7.2.4 Determining the Classification Threshold
	7.2.5 Pre-processing for ND-DTW
	7.2.6 Dealing With A Large Gestural Vocabulary

	7.3 ND-DTW Experiments
	7.3.1 ND-DTW Experiment A
	7.3.1.1 Results
	7.3.1.2 Discussion

	7.3.2 ND-DTW Experiment B
	7.3.2.1 Method
	7.3.2.2 Results & Discussion

	7.3.3 ND-DTW Experiment C
	7.3.3.1 Method
	7.3.3.2 Results
	7.3.3.3 Discussion

	7.4 ND-DTW Summary
	7.5 Multivariate Temporal Recognition Algorithm Summary
	7.5.1 Choosing Which Algorithm To Use When
	7.5.1.1 Limited Number Of Training Examples
	7.5.1.2 Substantial Number Of Training Examples
	7.5.1.3 Adding & Removing Gestures From A Trained Model
	7.5.1.4 Automatic Recognition

	7.6 Summary

	8 Conclusion
	8.0.1 Objective 1
	8.0.2 Objective 2 & 3
	8.0.3 Objective 4

	8.1 Research Contributions
	8.2 Future Research
	8.2.1 Continuous Real-Time Recognition
	8.2.2 Coherent Classification Feedback

	8.3 Concluding Remarks

	Bibliography

